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Abstract

For many years, we have known that the Universe is vast and expands with acceleration on

the largest scales. However, dark energy, the substance supposedly driving this acceleration,

might also weaken with time. Or at least the current standard model of cosmology has a

problem explaining all the highest-quality data available. We present one of the key technical

ingredients that enabled the Dark Energy Spectroscopic Instrument (DESI) Baryon Acoustic

Oscillation (BAO) distance measurements — the semi-analytic covariance matrices for the

two-point correlation functions of point tracers. We then briefly discuss the cosmological

implications of DESI BAO results, including the suggestion of dark energy. Then, we discuss

a curious possibility of relieving the Hubble tension, the discrepancy in the expansion rate

of the Universe today obtained directly from a Hubble diagram versus inferred indirectly

from the CMB, without introducing fundamentally new physics. In the end, we explore a

novel analysis technique combining galaxy redshift surveys with the data from the thermal

Sunyaev-Zeldovich effect, a secondary anisotropy in the CMB. We aim to interpretably extract

more valuable cosmological information from both than standard 2-point summary statistics

allow. This would enable better consistency tests for the concordance model of cosmology and

potentially new, exciting discoveries.
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Chapter 1

Introduction

1.1 Cosmological big questions

The glimpses of the Universe’s most global behavior continue to surprise and fascinate us. Early

examples of such realizations include the expansion (Slipher, 1917; Hubble, 1929) and vastness

(Hubble, 1926)1 of the Universe. Then, the discovery of accelerated expansion (Perlmutter

et al., 1999; Riess et al., 1998) was groundbreaking as well. Now there are indications that the

accelerating force may be weakening (Brout et al., 2022; Rubin et al., 2023; DES Collaboration

et al., 2024; DESI Collaboration et al., 2025e,a).

The standard model of cosmology, ΛCDM, emerged soon after the discovery of the

accelerated expansion of the Universe. It had been remarkably successful in accommodating

the different observations, but eventually some problems started to emerge. One of the most

famous is the Hubble (H0) tension — the more direct, local measurements of the current rate

of expansion (most remarkably, from SH0ES collaboration, e.g. Riess et al. (2021)) give a

value significantly larger than inferred from the cosmic microwave background (CMB, Planck

Collaboration et al. (2020c)).

Furthermore, ΛCDM bears two phenomenological ingredients in its name. Constant dark

energy (Λ) and cold dark matter (CDM) are the simplest possibilities for some fundamentally

1Thanks to Leavitt’s law (Leavitt & Pickering, 1912) for Cepheid variable stars enabling extragalactic
distance measurements.
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unknown substances thought to comprise ≈ 95% of total density. Cutting-edge measurements

testing their properties can revolutionize our understanding of the Universe.

In this thesis, our major focus is on the expansion of the Universe: nature of its acceleration

(mysterious dark energy) in Chapters 2 and 3 and discrepancy in the current speed inferred

from different methods (Hubble tension) in Chapter 4. Further, in Chapter 5 we explore how

to extract even more information from our data, which should help to enlighten dark matter

as well.

1.2 Selected cosmological probes

1.2.1 Large-scale structure of the Universe: overview

Galaxies (and matter) in the Universe are not distributed randomly (e.g., Shapley, 1933). On

a relatively smaller scale, galaxies clump together in clusters and superclusters. If we zoom

out further, we can see that these groups follow a more global structure with filaments and

walls – the cosmic web. This is the large-scale structure of the Universe.

In the ΛCDM model, the cosmic web is thought to form from tiny quantum fluctuations

stretched by cosmic inflation, enhanced by gravitational collapse. On the very largest scales

(starting from hundreds of megaparsecs), the structure is assumed to be homogeneous (largely

the same from any position) and isotropic (largely the same in any directions)2.

1.2.2 Galaxy surveys

Measurements of the large-scale structure of the Universe through galaxies are one of the

pillars of modern cosmology. It provides access to the mass distribution3 of the Universe at

different cosmic times.

The surveys systematically mapping galaxies on the sky come in two major varieties: pho-

tometric and spectroscopic. Photometric observations (photometry) record the flux (luminous

2There are claims of observations indicating inhomogeneity or anistropy, although they have not been
widely accepted.

3Not directly, because galaxies do not trace matter ideally.
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energy per area) in several filters (wavelength or frequency bands), which can be wider or

narrower. Spectroscopy provides finer details about the distribution of flux over wavelength

(or frequency) of light; it can be loosely imagined as having a very high number of narrow,

non-overlapping bands.

It generally takes more time or effort to obtain high-quality (high signal-to-noise ratio)

spectroscopy than photometry of the same object, because the faint light is subdivided further.

Accordingly, spectroscopic observations often use more easily obtainable photometry to select

targets for the optimal use of precious telescope and instrument time.

Spectra are particularly valuable in cosmology because they allow to obtain reliable redshifts.

Light propagating through the empty space is stretched (redshifted) together with the Universe.

In a good spectrum, one can identify a group of spectral emission or absorption lines with

known atomic lines. At least two lines are needed, because a single line can be almost anything

with an unknown amount of stretching, whereas ratios of wavelengths (or frequencies) in

pairs of lines are distinctive (if measured precisely enough) and do not change with an overall

redshift. The redshift is then the relative difference between the emitted and the observed

wavelength (known based on laboratory measurements). Redshifts add the third dimension to

the more readily obtainable position on the sky (the 2-dimensional celestial sphere) and thus

provide much more structural information.

There are methods of obtaining redshifts from photometry as well, but they are generally

less reliable. Improving these methods is an active area of research (see e.g. Myles et al., 2021;

Dey et al., 2021, 2022). For this reason, we do not explicitly use photometry in this thesis.

1.2.3 Baryon acoustic oscillations (BAO)

The early Universe was very hot and dense. High abundance of energetic photons and frequent

collisions kept the ordinary matter (colloquially called “baryons” in cosmology4; mostly

hydrogen) ionized. Photons continually interacted with the ordinary matter (mainly through

4Which is loose by particle physics standards, because electrons are strictly not baryons but leptons.
However, most of the mass of the ordinary matter is from baryonic particles — protons and neutrons.
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the free electrons), so that they all were in common equilibrium, comprising so-called photon-

baryon plasma. Photons provided relativistically high pressure in this mixture, preventing the

gravitational collapse of baryons and instead enabling sound waves (acoustic oscillations)

propagating at roughly 1/
√
3 ≈ 0.58 speed of light.

As the Universe expanded, it was diluting and becoming colder. Gradually, the photon-

baryon interactions became much rarer and weaker, allowing neutral (hydrogen) atoms to

form from ions and free electrons in a process called cosmic recombination5, which further

decreased the collision frequency in a feedback loop. As a result, eventually the photons and

baryons went their separate ways: photons propagated (almost) freely, and baryons collapsed

to form galaxies in the cosmic web (not just by themselves but also into the potential wells

already formed by dark matter, which was not deterred by photon pressure). Still, the acoustic

oscillations are imprinted in both — mostly as it is more likely to find two higher (or two

lower) densities at a distance that the sound waves traveled between the Big Bang and the

recombination (the sound horizon, which can be computed theoretically, including numerical

models). (This description largely follows Sunyaev & Zeldovich, 1970; Peebles & Yu, 1970, .)

The acoustic oscillation feature is weaker in baryons than in primordial photons. This is

because the subsequent evolution of ordinary matter was more influenced by the gravitational

interaction with the dark matter, which was largely unaffected by the photon pressure. But

despite this and other complicating effects, it remains slightly more likely to find galaxies

at the sound horizon distance from each other than at other similar distances, and this

picture stretches with the expanding Universe (is largely preserved in cosmological comoving

coordinates).

Thus, baryon acoustic oscillations provide a (comoving) standard ruler. Dividing the

real size (sound horizon) by the angular size of the feature as observed on the sky gives the

(comoving) angular diameter distance6 by definition. This distance is then related to the

5“Combination” might be a better name because the ions and electrons had never combined at an earlier
point in cosmic history, to the best of our current knowledge. But the term was formed in other circumstances,
in which “re-” was appropriate, and borrowed to cosmology.

6Comoving angular diameter distance is also called the transverse comoving distance.
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integrated rate of the expansion of the Universe between now and then7. This measurement is

called transverse BAO.

Redshift measurements also provide an additional measurement in the third dimension (line-

of-sight BAO). The change in cosmological redshift is connected to the line-of-sight distance

interval via the momentary rate of the expansion of the Universe. This way, measurement of

the size of the BAO feature in redshift space and knowledge of the real size (sound horizon)

gives the expansion rate at the representative time for the observed galaxy sample.

Without the absolute size of the sound horizon, BAO measurements with different galaxy

samples can provide relative distance measurements to different redshift times and thus

constrain the relative dynamics of the expansion of the Universe, but not its absolute rate.

1.2.4 Cosmic microwave background (CMB)

The cosmic microwave background is the oldest light that can be observed, often called an

afterglow of the Big Bang. It is formed of photons propagating freely after last interacting

with (scattering on) matter during cosmic recombination. They cooled down due to stretching

with the expanding Universe to the typical millimeter (roughly microwave) wavelength. It

is an on-sky image of predominantly a thin spherical shell of the Universe (surface of last

scattering), from which photons originating at the times of recombination could reach us now

by going straight all the time in between.

The CMB is famously an almost ideal example of blackbody (thermal) radiation with very

nearly identical temperature (T ≈ 2.725 K) in all directions. After the subtraction of the

dipole, which can not be disentangled from the motions of the Earth and its surroundings,

the differences are tiny at ≲ 100 µK = 10−4 K. We show the map of these fluctuations in

Figure 1.1. CMB also has similarly small polarization variations across the sky. Such small

perturbations can be modeled and interpreted very precisely and robustly, and they provide a

great view of the early Universe.

The maps of CMB fluctuations are summarized by angular power spectra. The angular

7And the spatial curvature of the Universe if we do not assume its absence on the largest scales.
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Figure 1.1: Map of the cosmic microwave background (CMB) temperature fluctuations measured by
the Planck satellite. (Image credit: ESA and the Planck Collaboration.)

power spectrum is a statistical tool describing the amount of variations on different angular

scales. We show the CMB temperature power spectrum in Figure 1.2.

Several features are apparent in Figure 1.2. One can see the damped oscillations with

the first peak at an angular scale ∼ 1◦. The period of these oscillations, measured very

precisely, is set by the acoustic feature we described in the previous section, analogous to the

transverse BAO in galaxies. The damping is due to photon diffusion before and during the

cosmic recombination (the process known as Silk damping, Silk, 1968). The additional height

variations in the oscillatory peaks are regulated by the amount of ordinary matter (baryons).

The formation of the CMB was intertwined with the evolution of the large-scale structure.

E.g., through gravitational interaction with dark matter, including gravitational redshift from

maxima and minima of the gravitational potential. CMB also has secondary anisotropies,

formed by photons’ interaction with matter after recombination, on their way towards us.

These include gravitational lensing (deflection by masses of dark matter and baryons) and
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Figure 1.2: Cosmic microwave background (CMB) temperature power spectrum measured by the
Planck satellite (red dots with errorbars) and predicted by the ΛCDM model (green). (Image credit:
ESA and the Planck Collaboration.)

scattering on re-ionized baryon gas (Sunyaev-Zeldovich effect, which we will use in Chapter 5).

1.2.5 Standard candles: Type Ia supernovae

The standard candle is an object with a fixed luminous power (total or in a certain wavelength

range). By knowing this power and measuring the power per area we receive from the object,

we can compute the distance using the inverse-square law. More precisely, in cosmology, this

gives a luminosity distance, which is related to the integrated rate of the expansion of the

Universe between now and the emission of the light, like the other distances.

Supernovae of a distinct type (Ia) are nearly standard candles. They have been identified

with a certain subclass of explosions of white dwarfs exceeding the Chandrasekhar limit by

accretion. Type Ia supernovae provided one of the first definite pieces of evidence in favor of

accelerated expansion of the Universe (Perlmutter et al., 1999; Riess et al., 1998).
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For precision cosmology with Type Ia supernovae, it is necessary to go beyond the

assumption of constant intrinsic power by establishing connections with other observable

quantities starting from the rate of luminosity decrease (Phillips relation). Technically, this

makes them standardizable candles. The light can also be partially obscured, e.g. by cosmic

dust. Many of the necessary corrective relations are not understood from first principles and

need to be calibrated using other distance measurements. An additional complication is that

Type Ia supernovae are relatively rare and have hardly been observed within the reach of more

direct distance measurements (parallax), thus, the calibration has to rely on a different type

of standardizable candles, e.g., Cepheid variable stars. This thesis does not include original

work on details of these measurements in particular, so we refer a curious reader to Riess et al.

(2022); Freedman et al. (2024); Brout et al. (2022); Rubin et al. (2023); DES Collaboration

et al. (2024).

1.3 Dark Energy Spectroscopic Instrument (DESI)

The Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016a) is con-

ducting a major spectroscopic galaxy survey since 2021. The instrument (DESI Collaboration

et al., 2016b, 2022) takes approximately 5000 spectra simultaneously. To deliver light to

the spectrographs, it uses optical fibers individually positioned by miniature robots in the

focal plane of the 4-meter Mayall telescope at Kitt Peak, Arizona. This allows to change the

configuration quickly and automatically to targets selected in advance. The target selection

relies on photometric Legacy Imaging Surveys (Dey et al., 2019).

During the main 5-year program, DESI is scheduled to cover 14,000 square degrees on sky

and the redshift range 0 < z < 3.5. As a result, the DESI survey will surpass the previous

leading surveys (mainly SDSS/BOSS/eBOSS) by an order of magnitude in both volume and

number of extragalactic objects, collecting more than 30 million galaxy and quasar spectra.

One of the main scientific drivers for its design was the precision of the BAO measurements.
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1.4 Statistics of the Universe on large scales

In this chapter, we provide a slightly deeper review of the statistical methodology used to

describe the large-scale structure.

1.4.1 Overdensity field

By field, we mean assignment of a value (e.g., a number or a vector) to each point in space (and

time). In the standard cosmological paradigm, we assume that the initial conditions are set

randomly (stochastically) by the quantum fluctuations during cosmic inflation. Accordingly,

we treat our observables as random fields.

Having a mass density field, we define a mass overdensity at any point:

δ(x) ≡ ρ(x)

ρ̄
− 1 (1.1)

The average density depends on cosmic time. However, measuring the mass density in 3

dimensions can be incredibly hard.

In galaxy surveys, we instead observe galaxies mainly as points with a certain position. We

can talk about their number density — number per volume. Ideal points can be represented

with Dirac delta functions δD(x− xp), which, integrated over a volume, indicate 0/1 whether

a point is inside or not. Alternatively, one might imagine a fine grid of cells, each of which has

a volume and a number of galaxies (possibly 0) and thus an average density.

From the number density, we define the number overdensity

δ(x) ≡ n(x)

n̄
− 1 (1.2)

Points can be weighted; that should be taken into account in the average density. Also, the

average density for a real galaxy survey should reflect the selection effects.

Because either density is non-negative, for either overdensity δ(x) ≥ −1. By design,

⟨δ(x)⟩ = 0, averaging over the possible realizations of the Universe from the random quantum

fluctuations.

We can also describe the overdensity field as a sum of plane waves (Fourier modes) δ(k)
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with wavevector k using a Fourier transform:

δ̃(k) ≡
∫

d3x δ(x)e−ik·x (1.3)

δ(x) =

∫
d3k

(2π)3
δ̃(k)eik·x. (1.4)

Space of wavectors k is commonly referred to as Fourier space, and the space of coordinates x

— as configuration space; the two descriptions are equivalent.

The Fourier image is convenient because linear equations give an independent time evolution

of different Fourier modes (plane waves). And linear equations are a great approximation for

small perturbations.

1.4.2 Gaussian random field

A Gaussian random field is a random field in which the joint distribution of values at any

number of points is a multivariate normal (Gaussian) distribution. It is a convenient and

common abstraction or approximation in cosmology.

First and foremost, we mean the distribution of possible realizations of the Universe from

primordial quantum fluctuations. But with homogeneity and isotropy, the spatial distribution

on large scales should approach it (akin to the ergodic hypothesis).

Assuming translation invariance (homogeneity), a Gaussian random field can be obtained

as a sum of independent Fourier modes. Fourier modes of a Gaussian random field also

represent a Gaussian random field in Fourier space.

The early Universe is very close to Gaussian, as predicted from the inflationary foundation

of ΛCDM and seen in the CMB maps (e.g., Planck Collaboration et al., 2020a). As we remarked

before, linear evolution preserves the mode independence and thus Gaussianity. Later evolution

by gravity and other interactions on small scales causes deviations (non-Gaussianity). Because

different modes start to affect each other’s evolution when perturbations grow beyond linear.

Another, simpler reason is that a normal distribution with zero mean and large deviations

(dispersion, variance) strongly violates δ(x) ≥ −1. Primordial non-Gaussianity is also possible

(e.g., predicted by some inflation models), and active search is ongoing using CMB (e.g., Planck
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Collaboration et al., 2020e) and LSS data (e.g., Rezaie et al., 2024; Chaussidon et al., 2024).

A normal (Gaussian) distribution is completely determined by its mean and covariance. As

we remarked in the previous section, cosmic overdensity fields have zero mean by construction.

This leaves the covariance, the pairwise correlations. With (large-scale) homogeneity, they

can depend only on the vector between the points. With isotropy, only distance matters.

But the line-of-sight direction is different from the others (e.g., in redshift-based distance

determination), so the angle with it matters too.

A Gaussian random field shares a convenient property with the normal distribution. Isserlis’

theorem8 (Isserlis, 1918) states that with zero mean, all higher moments (correlations of higher-

point) are determined by the covariance (2-point correlations). In particular, the odd-order

(odd-point) quantities are zero.

1.4.3 The 2-point correlation function (2PCF)

The 2-point correlation function (2PCF) of discrete particles (e.g., galaxies or dark matter

halos) describes the excess probability of finding two such particles separated by a certain

distance, compared to the random scatter case.

ξ(r) =
dPg(xg + r|xg)

n̄ · d3r − 1. (1.5)

dPg(xg + r|xg) is the conditional probability of finding a (different) galaxy in an infinitesimal

volume d3r around xg + r given a galaxy at xg. n̄ is again the expected number density if the

Universe were unclustered; it should reflect the survey selection effects, weighting scheme, etc.

Perhaps a more intuitive statement is that the probability of finding two particles (e.g.,

galaxies or halos) in infinitesimal volumes d3x1,2 near x1,2 respectively is

dP12 = n̄d3x1 · n̄d3x2 · [1 + ξ(x2 − x1)], (1.6)

where we can set r ≡ x2 − x1.

8Isserlis’ theorem is also known in particle physics and cosmology as Wick’s (probability) theorem after
Wick (1950).
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A more general definition of the 2PCF is through the spatial correlations of overdensities

(Equation (1.1) or Equation (1.2)):

ξ(r) = ⟨δ(x)δ(x+ r)⟩ = 1

V

∫
d3xδ(x)δ(x+ r). (1.7)

For the number overdensity of discrete particles (Equation (1.2)) this definition is theoretically

equivalent to the probabilistic one (Equation (1.5)).

BAO feature manifests as a peak of the correlation function (scaled by r2) at r ≈ 150 Mpc.

This feature is relatively subtle and requires large galaxy samples to detect. The first discovery

this way was in Eisenstein et al. (2005).

2PCF can be estimated by counting pairs between observed galaxies (data) D and random

points R distributed according to the background density n̄. Therefore, randoms reflect the

survey boundaries, subtler selection effects and weighting. It is often more efficient to generate

random points than to write some functional form of n̄(x).

The probabilistic definition (Equation (1.5)) motivates the Davis-Peebles estimator (Davis

& Peebles, 1983):

ξ̂DP(rbin) =
DD(rbin)

DR(rbin)
− 1, (1.8)

where DD(rbin) is the (weighted) count of pairs of data points with separation r between them

belonging in a certain region (bin) around rbin, and DR(rbin) is the same but for data-random

pairs.

Expansion of the correlation function through overdensities (Equations (1.2) and (1.7))

motivates the Landy-Szalay estimator (Landy & Szalay, 1993):

ξ̂LS(rbin) =
DD(rbin)− 2DR(rbin) +RR(rbin)

RR(rbin)
, (1.9)

where RR(rbin) is the same as DD and DR(rbin) but counting pairs of random points. The

Landy-Szalay estimator has minimal variance and is more stable to small fluctuations in the

random points (Kerscher et al., 2000), so we rely on it exclusively in Chapters 2 and 3. At the

same time, the Davis-Peebles estimator is less demanding in multiple ways, one of which is

important in Section 5.3.1.
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1.4.4 The power spectrum

The power spectrum is defined through the correlation of the Fourier modes ((1.3)):

〈
δ̃(k)δ̃∗

(
k′)〉 = (2π)P (k)δD

(
k − k′), (1.10)

where δD is the Dirac delta function, theoretically infinite at zero argument and zero elsewhere.

In practice, power spectrum estimation uses a finite volume with a discrete Fourier transform,

which transforms the Dirac delta function (infinite at zero) with a volume multiplier if and

only if k = k′ (technically, Kronecker delta).

The BAO feature manifests as a series of peaks in the power spectrum. This was first

measured in data by Cole et al. (2005).

The 2-point correlation function and the power spectrum are connected via the Fourier

transform:

P (k) =

∫
d3r ξ(r)e−ik·r (1.11)

ξ(r) =

∫
d3k

(2π)3
P (k)eik·r (1.12)

Thus, 2PCF and power spectrum contain identical information if measured over infinite ranges.

However, a cut in Fourier space does not correspond to a cut in configuration space and vice

versa. Additionally, survey geometry and selection effects are more complicated for the power

spectrum (Hand et al., 2017).

1.4.5 Higher-point statistics

Higher-point statistics can be obtained by generalizing Equations (1.7) and (1.10). E.g., the

3-point correlation function:

ζ(r1, r2) = ⟨δ(x)δ(x+ r1)δ(x+ r2)⟩ (1.13)

and the bispectrum (the Fourier-space 3-point function):

〈
δ̃(k1)δ̃(k2)δ̃

∗(k3)
〉
= (2π)B(k1,k1)δ

D(k1 + k2 − k3) (1.14)
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As we mentioned before, for a Gaussian random field, higher-point statistics are set by the

2-point statistics (Isserlis, 1918). For a non-Gaussian field, they contain additional information,

approaching completeness as order increases to infinity. However, the information content does

not increase very fast, whereas the number of dimensions grows quickly (even after one uses

additional symmetries to reduce dimensionality). This motivates the search for alternatives.

1.5 Large-scale structure data analysis and covariance matrices

For meaningful (statistical) interpretation of data (Bayesian or frequentist), it is crucial to

compute the likelihood — describing the probability of obtaining the data given a model.

Fortunately, the distribution of measured clustering statistics is well described by a multivariate

Gaussian (thanks to the central limit theorem and typically averaging a large number of modes),

which is fully described by the mean and the covariance matrix. The mean can be set to the

theoretical prediction, which leaves the covariance.

Perhaps the most intuitive approach to the covariance is scatter in repeated independent

measurements. However, repeating a cutting-edge survey even once more is hardly practical.

Moreover, the fact that we have only one Universe sets a limit to how many big surveys

(covering the same redshifts) can be done before they have to overlap.

The next option is simulating the Universe in computer models (ultimately, making mock

galaxy catalogs). This solution is far from ideal. Detailed simulations are computationally

expensive, more so as they need to cover larger volumes for bigger surveys. A precise

covariance estimate requires a large number of samples, increasingly higher as more quantities

are measured. This forces a hard compromise between quality and quantity, keeping the total

computation time very long. Such catalogs need to capture key aspects of clustering and

be representative of the data or the assumed theoretical model. The mock-based covariance

production is therefore not characterized by flexibility, as the generation and processing of

numerous simulations for an updated dataset or alternative model requires a huge effort.

Another method involves making multiple samples by selecting different subsets of the data.

The lack of dependence on mocks and model assumptions makes them attractive. These are
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represented by resampling techniques like jackknife and bootstrap, which involve splitting the

data into parts. However, it is often hard to divide an intricately shaped survey volume into

equivalent regions. These regions would not be independent of each other because large-scale

correlations exist. Subsets of the survey may have more complicated boundaries, affecting the

covariances in ways not described by simple scalings.

From a theoretical point of view, covariance of 2-point functions ((1.7)) involves expectation

values at 4 points. In a Gaussian random field, by Isserlis’ theorem (Isserlis, 1918), they

can be reduced to 2-point functions between different pairs of points. The 2-point function

could be measured from the data or modeled theoretically and substituted into its covariance

computation. However, non-Gaussianities develop over cosmic time. Galaxies correspond to

high matter overdensities, evolving in a crucially nonlinear regime. This makes the derivation

of important higher-point corrections to the ideal Gaussian picture also very challenging.

Measuring the necessary 3- and 4-point functions from the data reliably is hard as well because

of the large number of bins needed.

Each of these approaches has its advantages and disadvantages. It would be nice to develop

an optimal combination. This is what we approach in a major part of this thesis, Chapter 2,

by combining theory with data resampling (or simulated Universes).

1.6 Outline of the thesis

Chapter 2 is dedicated to the important technical work on the fast semi-theoretical, semi-

empirical covariance matrices for 2-point correlation functions. Chapter 3 then shows a

selection of global DESI BAO results, which relied on these covariance matrices (along with

multiple other supporting studies). We focus on the nature of dark energy and the Hubble

tension. Chapter 4 follows with our earlier work on a potential relief of the Hubble tension

through inhomogeneous recombination, which does not require fundamentally new physics.

Chapter 5 presents our work in progress on extracting more information than standard 2-point

functions allow without higher-point functions, by using the DESI spectroscopic galaxies

together with secondary CMB anisotropies maps. In Chapter 6 we reflect on the achieved
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results and discuss future directions.
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Chapter 2

Fast semi-analytical covariance

matrices for two-point correlation

functions for DESI data1

2.1 Introduction

It is a particularly exciting time for observational cosmology due to the transition from Stage

III to Stage IV dark energy experiments. The Dark Energy Spectroscopic Instrument (DESI)

(DESI Collaboration et al., 2016a, 2022) belongs to this newer generation and is actively

operating. Last year saw the validation of its scientific program (DESI Collaboration et al.,

2024d) and the early data release (DESI Collaboration et al., 2024e). In particular, the

sample of Luminous Red Galaxies (LRG, Zhou et al. (2023)) observed during the first two

months of DESI main survey operations (DESI-M2) yields a BAO scale measurement with

1.7% precision (Moon et al., 2023), which is already comparable to the aggregate precision of

0.77% of preceding leading surveys, BOSS and eBOSS (Alam et al., 2021). A larger 1-year

dataset (DR1) (DESI Collaboration et al., 2025c) has been released, along with two-point

clustering (DESI Collaboration et al., 2024a), inverse distance ladder measurements (and thus

1This chapter is a compilation of Rashkovetskyi et al. (2023) and Rashkovetskyi et al. (2025b).
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the expansion history of the Universe) using the baryon acoustic oscillations (BAO) of galaxies,

quasars (DESI Collaboration et al., 2025f), and Lyman-α (DESI Collaboration et al., 2025d),

full-shape analysis of the 2-point statistics for galaxies and quasars constraining the growth of

cosmic structure (DESI Collaboration et al., 2024b), and implications for cosmological models

(DESI Collaboration et al., 2025e, 2024c; Chaussidon et al., 2024). These DESI results have

unprecedented precision for their kind of measurement, providing unique new opportunities to

test our understanding of the Universe.

Data interpretation with a physical model requires a covariance matrix model, which can

be hard to obtain. An intuitive way to do so is from the scatter in repeated independent

identical measurements. However, only one Universe is accessible for us to probe in cosmology.

Moreover, it is not feasible to replicate a state-of-the-art experiment exactly. Therefore,

covariance matrix estimation in cosmology requires elaborate techniques.

The standard method for computing covariance matrices in large-scale structure studies

has been based on scatter within large sets of simulated (mock) catalogs (e.g. Chuang et al.

(2015); Zhao et al. (2021, 2025); Ereza et al. (2023); Variu et al. (2024)). They need to be both

highly accurate representations of the data (in particular, large enough to cover the survey

volume), and numerous enough to give a good estimate of the covariance matrix of the vector

of observables. The relative precision is primarily determined by the number of samples and

the dimension of the matrix. If the number of samples is smaller than the number of bins plus

one, the resulting covariance matrix estimate is not invertible. Moreover, sample noise biases

the estimate of the inverse covariance matrix (Hartlap et al., 2007) and causes the widening of

model parameter errorbars (Percival et al., 2022). Because highly detailed simulations require

a lot of time even for volumes much smaller than a survey like DESI covers, it is unavoidable

to rely on approximations, limiting the realism of the simulated catalogs. Even so, generating

and calibrating an adequate mock suite is very hard and expensive.

The mock-based covariance matrix estimation is becoming increasingly challenging with

time. First, as the surveys improve, each mock catalog needs to include more galaxies and/or

more volume, thereby taking longer to generate and process. Second, with more data, we
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aim to include a longer vector of observables in the analysis, requiring a larger covariance

matrix for it, which in turn demands a higher number of mocks for adequate precision (Hartlap

et al., 2007; Taylor et al., 2013; Percival et al., 2014). Third, the substantial time to generate

mocks typically means that one cannot produce enough simulations for many separate sets of

cosmological, galaxy-halo connection models and selections of tracer galaxy samples. This

creates a potential systematic error when extrapolating the covariances derived in one scenario

to another. Fourth, as a specific example of this, the long timeframe to generate mocks can

even create a situation where schedule concerns force the mocks to be calibrated on early

inputs that do not match the final version of the analysis. The problem is especially severe

when blinding is employed, and the simulation teams should not see the true and complete

data clustering before the analysis methodology is frozen. This creates a need and opportunity

for faster alternative methods.

A promising alternative is a theoretical derivation of the covariance matrix, which is more

conveniently performed in Fourier space for cosmological clustering. Analytical covariance

matrices for galaxy power spectrum have been developed using perturbation theory (Wadekar

& Scoccimarro, 2020; Kobayashi, 2023; Alves et al., 2025). However, perturbative expansions

only work for a limited range of wavenumbers. Unfortunately, the translation of these results

to the configuration space introduces an additional precision loss due to the nonlocality of the

Fourier transform. The accuracy of the transformation can be improved with the generalization

of the FFTLog algorithm to covariance matrices (Fang et al., 2020), but this approach has

not yet been applied to and validated for redshift-space clustering of galaxies in 3 dimensions.

Therefore, the analytical methods are not yet directly applicable to the correlation functions.

Another approach is resampling the data and considering the scatter between different parts

for the covariance estimation. The jackknife technique is based on this idea. Unfortunately,

dividing the spectroscopic survey volume into equivalent parts is challenging because of

boundary effects and multiple other factors varying across the survey. This problem becomes

more severe with a larger number and accordingly smaller size of regions. More samples

are still desirable for higher covariance matrix precision, analogously to the mock case. In
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addition, regions are not completely independent from each other. Mohammad & Percival

(2022) attempted to correct for the last factor by dividing the jackknife pair counts into

different categories and re-weighting some of them. However, Trusov et al. (2024) showed that

some of the former assumptions are violated in higher-density setups, leading to significant

biases. To solve this problem and obtain a more precise, better-conditioned matrix, they

proposed a hybrid approach, combining jackknife with mocks (requiring fewer realizations than

for the sample covariance). This illustrates the promise of hybrid approaches incorporating

different techniques.

Here, we focus on a combination of analytical and jackknife elements in configuration

space. The theoretical component hinges on the relation between the covariance matrix of the

2-point correlation function (2PCF) and the 4-, 3- and 2-point functions. This method has

been developed in a series of papers (O’Connell et al., 2016; O’Connell & Eisenstein, 2019;

Philcox et al., 2020; Philcox & Eisenstein, 2019) and implemented as the RascalC code2.

This approach enables the computation of covariance matrices for correlation functions using

only the data, without extra effort, assumptions and approximations for generating mocks.

Multipole (Legendre) moments of the correlation function are preferable for redshift-space

analysis and theoretical modeling (e.g. Chuang & Wang (2013)). Philcox et al. (2020) only

developed an estimator for the covariance matrix of the 2PCF in angular bins. With a large

number of angular bins required to estimate multipoles adequately, the computation time

of the covariance matrix becomes infeasibly long. Philcox & Eisenstein (2019) introduced a

direct covariance model for Legendre moments, but its final calibration depends on a separate

computation for angular bins, which is inconvenient in practice. We extend the methods of

Philcox et al. (2020); Philcox & Eisenstein (2019), developing a more practical and exact

estimator for the 2PCF multipole covariance compatible with DESI’s correlation function

measurement code, pycorr3 (De Mattia et al., 2024).

We also note the prospects of standard reconstruction techniques that aim to reverse the

2https://github.com/oliverphilcox/RascalC

3https://github.com/cosmodesi/pycorr
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large-scale displacements during the times after the drag epoch. Such subsequent evolution

leads to broadening and contamination of the BAO peak, and one can partially undo it

to sharpen the feature (Eisenstein et al., 2007). The RascalC formalism is applicable to

reconstructed 2PCF covariance as well, with minor adjustments.

The method has been closely integrated with DESI. We have contributed RascalC

covariances for the BAO analysis of DESI-M2 data (Moon et al., 2023). A part of this chapter

accompanies it, focusing on the validation of the approach in realistic circumstances. We limit

ourselves to analogs of the DESI LRG sample (Zhou et al., 2023) due to the availability of a

large suite of mocks with corresponding cuts, providing a good sample covariance matrix for

reference. Similarly to Philcox et al. (2020), we process a single mock catalog in essentially

the same manner as data and compare the resulting covariance with the sample covariance

of clustering measurements in all available mocks, which gives a fair proxy of the pipeline

performance on data and is also robust to the mismatch between data and mock clustering.

We repeat the procedure multiple times, taking a different catalog each time to assess the

accuracy of the method, its stability, and fluctuations. In addition, we pay extra attention

to the formation of a covariance matrix comparison toolkit. We focus on the meaning of the

numbers used and derive reference values for the ideal case when the semi-analytical prediction

matches the true underlying covariance. Due to sample variance, these expectation values can

be nontrivial, and understanding the noise in the comparison measures is crucially important

as well. We choose a smaller number of observables for lower noise and clearer interpretation,

and further project the covariances into the lower-dimensional and more physically meaningful

space of model parameters.

Following that, it was embraced as part of a coordinated covariance matrix effort for

DESI DR1 two-point clustering measurements (DESI Collaboration et al., 2024a), along

with analytical covariance matrices for power spectra (Alves et al., 2025) and the general

comparison focusing on the consistency of the model fits (Forero-Sánchez et al., 2024). We have

benefited enormously from synergies with other supporting studies for the galaxies and quasars

BAO (DESI Collaboration et al., 2025f): optimal reconstruction (Chen et al., 2024a; Paillas
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et al., 2025), combined tracers (Valcin et al., 2025), halo occupation distribution systematics

(Mena-Fernández et al., 2025; Garcia-Quintero et al., 2025), fiducial cosmology systematics

(Pérez-Fernández et al., 2025) and theoretical systematics (Chen et al., 2024b).

Fiber assignment incompleteness effects are a big challenge with DESI. For a spectrograph

with 5000 robotic fibers, the choice of a target for each is highly complex. Some fibers

cannot reach all targets in the field of view, which leads to incomplete coverage, dependent

on the priority of different targets and the density of the targets on the sky. To improve the

completeness, DESI is scheduled to make 7 dark-time and 4 bright-time passes over each area

during its full 5-year program (Schlafly et al., 2023). However, the coverage achieved during the

first year of observations (DR1) varies across the footprint (Ross et al., 2025) between complete

and only a single pass in many areas. In multi-pass regions, the assignment also depends on

previous DESI exposures in the area. These effects imprint on 2-point clustering (Bianchi

et al., 2024) and must also affect the higher-point correlations entering the covariance. The

exact algorithm can be applied to mocks, but it is not fast enough to obtain as many catalogs

(∼ 1000) as needed for the estimation or high-quality validation of the full covariance matrix

(Lasker et al., 2025). A faster approximation has been developed (Hanif et al., 2025), enabling

a suite of 1000 mocks with fiber assignment modeled. We aim to validate the semi-analytical

covariance matrices, taking fiber assignment incompleteness into account for the first time.

We organize this chapter in the following way. Section 2.2 is dedicated to the semi-

analytical covariance matrix estimation: Section 2.2.1 summarizes the previously developed

methodology, Section 2.2.2 discusses a modification of random counts computation and

Section 2.2.3 introduces a formal extension to reconstructed data. In Section 2.2.4 we

derive the new estimators for covariance matrices of Legendre multipoles of the correlation

function, used in Section 2.5. In Section 2.3 we discuss the problem of covariance matrix

comparison, presenting our selection of generic compact measures in Section 2.3.1, explaining

their application to the internal convergence checking in Section 2.3.2 and the Fisher projection

to a space of physical model parameters in Section 2.3.3.

In Section 2.4 we apply the previously discussed methods to RascalC validation with
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DESI-M2 LRG mocks. We briefly describe the mock catalogs and standard BAO reconstruction

methods in Section 2.4.1, explain the covariance matrix setup in Section 2.4.2, check the

internal convergence in Section 2.4.3 and finally compare the semi-analytic covariances with

the mock sample covariances in the measurement space (the correlation function bins) in

Section 2.4.5, in the BAO model parameter space in Section 2.4.6 and particularly for the

BAO scale in Section 2.4.7.

In Section 2.5 we validate the updated semi-analytical covariance matrix methodology for

DESI DR1 using mocks. Section 2.5.1 provides details on the DESI DR1 mock catalogs, fiber

assignment incompleteness modeling, standard BAO reconstruction and analysis techniques

informing our comparison of covariance matrices. Section 2.5.2 explains the setup for semi-

analytic covariance matrix estimation. In Section 2.5.3 we check the consistency of the method’s

application to the simulations: intrinsic numerical stability and the values of the key parameter

of the covariance matrix model In Section 2.5.4 we compare our semi-analytical covariance

matrix estimates with the sample covariance of the mocks in terms of correlation function

multipoles and the cosmological parameters, following both BAO and full-shape analyses.

Section 2.6 concludes the main text with a summary and an outlook. Section A.1 gives

the covariance matrix estimators generalized for multi-tracer analysis. Section A.2 provides

an overview and derivations of useful properties of covariance matrix comparison metrics.

Section A.3 explains the procedure to obtain the covariance for the combination of two disjoint

regions (volumes).

2.2 Methods of covariance matrix estimation

2.2.1 Overview of previous work

We start with a summary of the methodology developed in O’Connell et al. (2016); O’Connell

& Eisenstein (2019); Philcox et al. (2020). The RascalC code builds single-parameter4

4For single tracer; for multiple tracers it is one parameter per tracer.
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Data catalogRandom catalog

Full 2PCF Jackknife 2PCF
RR counts

full and jackknife

Jackknife covariance CJRascalC
Jackknife model

C̃J(αSN)

Full model
C̃(αSN)

Best fit: α∗
SN

Full covariance
CR = C̃(α∗

SN)

Figure 2.1: Flowchart of RascalC jackknife pipeline (fiducial; developed in O’Connell & Eisenstein
(2019); Philcox et al. (2020)). This process is used for DESI data and most of the mock tests in this
paper. In the latter case, a single mock catalog and its corresponding random catalog(s) are provided
as data and randoms.

covariance matrix models5 based on a random catalog and a table of 2-point correlation

function values. Then we fit a model to a reference covariance (defined later) to obtain

the optimal parameter value for the final prediction. In the fiducial data pipeline, shown

schematically in Figure 2.1, we measure the correlation function directly from the data, the

code produces separate models for full and jackknife covariance matrices, we fit the latter

to the data jackknife covariance matrix, and plug the resulting optimal parameter into the

full model. Figure 2.2 shows an alternative pipeline where we use the best fit of the full

covariance model to the mock sample covariance instead. The jackknife methodology has a

significant advantage: it only requires mocks for the initial validation, and then allows to

generate covariance matrices for different setups without additional simulations. We now

provide more details on both pipelines, focusing on the single-tracer case; the generalization

5This step is the most computationally heavy and is implemented in C++.
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Data catalogRandom catalog Mock catalogs

Mock 2PCFsFull 2PCFRR counts

Sample covariance CSRascalC

Full model
C̃(αSN)

Best fit: α∗
SN

Full covariance
CR = C̃(α∗

SN)

Figure 2.2: Flowchart of RascalC mocks pipeline (alternative; principal idea from O’Connell et al.
(2016)). The full covariance model can be reused from a jackknife computation (Figure 2.1), provided
that the randoms and full 2PCF were the same.

to multiple tracers can be found in Section A.1.

To explain the covariance matrix model, we need to start with the definition of the 2-point

correlation function (2PCF). The standard Landy-Szalay estimator (Landy & Szalay, 1993) in

radial bin a and angular bin c6 is

ξ̂ca =
(NN)ca
(RR)ca

(2.1)

where N = D −R, R are random points and D are data points (galaxies).

The random counts RR are determined by the survey geometry. We assume that the

survey design choices are independent of the random realization of the Universe. Consequently,

we treat the random counts as fixed.

The numerator, however, is determined by structure formation processes, which are

6RascalC assumes uniform binning in |µ|, µ being the cosine of the angle between the line of sight and
the pair separation (assuming symmetry with respect to µ → −µ). The line of sight is the direction to the
midpoint of the galaxy pair in an aperiodic survey, and a fixed coordinate direction (ẑ) in periodic boxes.
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considered stochastic in the cosmological paradigm. Therefore, it is crucial for scatter in the

correlation function measurements.

The NN counts can be expanded as

(NN)ca =
∑

i̸=j

ninjwiwjΘ
a(rij)Θ

c(µij)δiδj . (2.2)

The survey has been divided into cells indexed by i and j. ni is the ensemble average number

of galaxies in the cell i, wi is the weight for the random point in the cell, δi is the fractional

galaxy overdensity in the cell, µij is the absolute value of the cosine of the angle between the

line of sight and the separation vector rij = ri − rj , rij is the length of that vector, and Θ are

binning functions (unity if the argument fits into the bin and zero otherwise).

Hereafter, we use the following shorthand notation for the covariance matrix:

Ccd
ab ≡ cov

[
ξ̂ca, ξ̂

d
b

]
≡
〈
ξ̂caξ̂

d
b

〉
−
〈
ξ̂ca

〉〈
ξ̂db

〉
. (2.3)

This covariance matrix involves an ensemble average of 4 overdensities at up to 4 different

positions. The reason is that each correlation function estimator (Equations (2.1) and (2.2))

contains 2 overdensities at 2 different positions, and they are substituted into Equation (2.3).

Some of the 4 positions can be the same, resulting in only 3 or 2 distinct positions7 (O’Connell

et al., 2016).

We then use the following shot-noise approximation to eliminate repeated overdensities at

the same position and arrive at the N -point correlation functions O’Connell et al. (2016):

(δi)
2 ≈ αSN

ni
(1 + δi). (2.4)

The original motivation (O’Connell et al., 2016) refers to the Poisson sampling. We repeat

it with slight modifications because the approximation is crucial to the method. Assuming

similar weights for galaxies and randoms, the overdensity in cell i is

δi =
bi
ni

− 1, (2.5)

7However, all 4 cannot be the same, because the correlation at zero separation is excluded (i ̸= j in
Equation (2.2)).
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where bi is the actual number of galaxies in the cell and ni = ⟨bi⟩ is the expectation value

(ensemble average) of that number8. We can choose a sufficiently small cell size so that ni ≪ 1.

Assuming that the galaxies appear in the cell independently, bi follows the Poisson distribution,

and then
〈
b2i
〉
= ni. Substituting Equation (2.5) into Equation (2.4) and taking the ensemble

average of both sides gives 1/ni − 1 ≈ αSN/ni. This sets the baseline expectation for αSN = 1.

We further explain the overdensity δi in the right-hand side of Equation (2.4), because it

cancels in the previous argument. With ni ≪ 1, the average of (δi)2 is dominated by cells with

bi = 1. Whereas almost all the cells have bi = 0, the corresponding (δi)
2 = 1 (Equation (2.5)).

The fraction of cells with bi = 1 is only ≈ ni, but they have a large (δi)
2 ≈ 1/n2

i . For bi = 2,

the fraction drops significantly to ≈ n2
i , whereas the (δi)

2 ≈ 4/n2
i does not increase as much.

The contributions to the average of (δi)2 (fraction of cells times the (δi)2 value) decrease further

for higher values of bi. Thus substituting the most significant case, bi = 1, into Equations (2.4)

and (2.5) gives 1/n2
i − 2/ni+1 ≈ αSN/n

2
i . This is again true for αSN = 1 because ni ≪ 1. The

right-hand side of Equation (2.4) is dominated by δi ≫ 1 for bi = 1, therefore, this overdensity

is necessary.

Several factors can cause the shot-noise rescaling, i.e., effectively shift αSN from 1. First,

the observations of galaxies in the same small volume of a real survey are not independent.

There are fundamental limitations to their number due to resolution, number of observations,

and number and size of optical fibers in a fiber spectroscopic instrument. Furthermore, in

DESI, each fiber is attached to a robotic positioner confined to a specific area of the focal

plane (Silber et al., 2023). Therefore, the selection of a target for the fiber (fiber assignment)

must depend on other objects present within this patrol area. As a result, the number of

observed galaxies bi is not guaranteed to follow the Poisson distribution, and
〈
b2i
〉
= ni may

not hold. Second, different weights on galaxies and random points can alter the cell overdensity

estimate δi = bi/ni − 1. Such weighting is introduced, in particular, for the mitigation of fiber

assignment effects on DESI clustering measurements (Bianchi et al., 2024; Ross et al., 2025).

The combination of these effects can decrease or increase the shot-noise rescaling.

8ni can vary from cell to cell.
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To recapitulate, the shot-noise approximation (Equation (2.4)) allows us to remove the

repeated same-cell overdensities from the covariance matrix estimator. The ensemble averages

of a product of overdensities at N different positions are the N -point correlation function by

definition. Therefore, the resulting expression for the covariance matrix involves certain sums

with the 4-, 3- and 2-point correlation functions. We separate the model covariance matrix

into three parts:

C̃cd
ab(αSN) =

4C
cd
ab + αSN

3C
cd
ab + α2

SN
2C

cd
ab. (2.6)

These parts, or the d-point terms dC have the following theoretical expressions9:

4C
cd
ab =

1

(RR)ca(RR)db

∑

i̸=j ̸=k ̸=l

ninjnknlwiwjwkwlΘ
a(rij)Θ

c(µij)Θ
b(rkl)Θ

d(µkl) (2.7)

×
[

�
��η
(c)
ijkl + 2ξikξjl

]

3C
cd
ab =

4

(RR)ca(RR)db

∑

i̸=j ̸=k

ninjnkwiw
2
jwkΘ

a(rij)Θ
c(µij)Θ

b(rjk)Θ
d(µjk)

×
[
�
�ζijk + ξik

]

2C
cd
ab =

2δabδcd

[(RR)ca]
2

∑

i̸=j

ninjw
2
iw

2
jΘ

a(rij)Θ
c(µij)[1 + ξij ],

where δab and δcd are Kronecker deltas; ξij = ξ(rij , µij) is the 2PCF evaluated10 at the

separation between points number i and j.

ζijk and η
(c)
ijkl are the 3-point and connected 4-point correlation functions. They are

evaluated at the separations between i, j, k and i, j, k, l points, respectively. These non-

Gaussian higher-point functions are included in the theoretical expression for completeness.

However, evaluating them in practice is challenging. Theoretical models may not cover the

necessary range of scales and might also require additional assumptions. Direct measurements

from data are costly and noisy because the number of bins increases for higher-point correlation

functions. Consequently, the 3- and connected 4-point correlation functions are not used in

9In the RascalC code dC are estimated using Monte Carlo importance sampling of points from random
catalogs (Philcox et al., 2020).

10To compute ξij , the RascalC code builds a bicubic interpolator based on an input grid of ξ(r, µ) values.
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the practical implementation.

Instead of evaluating them, the covariance matrix has been adjusted with the shot-noise

rescaling parameter according to Equation (2.6). The d-point terms have been computed solely

with the 2-point function (as designated by crossing out ζ and η in Equation (2.7)). This

2PCF may, however, include non-linear effects, e.g., due to being estimated from the data or a

realistic simulation.

The resulting expressions are theoretically analogous to the Gaussian covariances, neglecting

the trispectrum contribution and super-sample covariance (e.g., Grieb et al., 2016). With

them, one can also rescale the shot noise as a free parameter. The constant shot-noise term

in the power spectrum corresponds (via the Fourier transform) to a delta-function addition

to the correlation function (which is not commonly considered because we do not measure

the correlation function at zero separation). One can then eliminate the delta functions by

integrating their contributions to the full 4-point covariance matrix integral over 1 or 2 of the

positions and obtain the 3- and 2-point integrals analogous to sums in Equation (2.7). The

only difference we found is that the 1 + ξij factor does not appear in the 2-point term 2C
cd
ab.

But working in configuration space is advantageous because it allows to naturally account for

survey geometry and selection, including the variation of the expected density n̄ across the

survey volume, by sampling points from the random catalog.

The key shot-noise rescaling parameter value can be chosen to optimally match a reference

covariance obtained from a set of mocks. The best match is quantified by minimal Kullback-

Leibler divergence11:

DKL

[
C̃−1(αSN),CS

]
=

1

2

[
tr
(
C̃−1(αSN)CS

)
−Nbins − ln det

(
C̃−1(αSN)CS

)]
. (2.8)

In its computation, the model covariance C̃(αSN) (with elements given by Equation (2.6)) is

inverted because the sample covariance of the simulations CS is more noisy. With a smooth

theoretical model and only one parameter (αSN) to adjust, fewer mocks are required than for

11Which is determined by the covariance matrices for two multivariate normal distributions with the same
mean.
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direct use of their sample covariance matrix (O’Connell et al., 2016). The process is illustrated

in Figure 2.2. In other words, fitting the RascalC covariance model to mocks is akin to

template-based smoothing of the simulation-based sample covariance matrix.

Theoretically, the inversion of the RascalC covariance gives a slightly biased estimate of

the precision matrix. However, the Hartlap factor (Hartlap et al., 2007) is not applicable since

it is not a sample covariance. The relevant second-order bias correction matrix accounting for

importance sampling noise has been worked out (O’Connell & Eisenstein, 2019):

Ψ̃ =(I− D̃)C̃−1 (2.9)

D̃ =
Nsubsamples − 1

Nsubsamples


−I+

1

Nsubsamples

Nsubsamples∑

i=1

C̃−1
[i] C̃i


,

which uses the partial covariance estimates C̃i from Nsubsamples distinct sets of configurations

resulting from importance sampling in the estimation of sums (Eq. (2.7) or (2.13)) and mean

of all the partial estimates but the i’th C̃[i]. However, we find it practically insignificant: the

eigenvalues of D̃ are ≲ 10−3.

Unfortunately, the mock-fitting approach does not solve all issues with the mocks. The

simulations still take extra time to produce and impose further assumptions and approximations.

Therefore, a different method is desirable to reduce the dependence on simulations.

An alternative reference covariance can be obtained from the data with jackknife resampling.

However, the jackknife covariance matrix is not perfectly representative of the true, full-survey

covariance for several reasons. First, the resampled pieces of realistic data have different

geometry from the full dataset and each other, which affects the covariance in a complicated

way. Second, the pieces of the data are correlated (Mohammad & Percival, 2022; Trusov et al.,

2024). Therefore, it is safer to develop a separate theoretical model for jackknife covariance

(O’Connell & Eisenstein, 2019), which we briefly explain in the following.

The method uses a slightly non-standard formalism, dubbed unrestricted jackknife (Philcox

et al., 2020). Ther,e the jackknife correlation function estimate ξA is not the auto-correlation

of the whole survey excluding the jackknife region A (as in exclude-one, restricted jackknife),
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but the cross-correlation function between that region and the whole survey. Equivalently,

this means that the additional jackknife weighting factor for the pair of points i, j, qAij , is 1

if both of them belong to the jackknife region A, 1/2 if only one, and 0 if neither. The pair

counts can be converted from different terms (auto and cross jackknife counts), often saved

separately in light of Mohammad-Percival correction (Mohammad & Percival, 2022).

The unrestricted jackknife is convenient since the full pair counts of each type are the sum

of all the jackknife pair counts of the same type. Then if one weights the regions by the RR

pair counts,

(wA)
c
a =

(RRA)
c
a

(RR)ca
, (2.10)

the weighted mean correlation function is equal to the full-survey one. This simplifies the

theoretical modeling of the jackknife covariance.

The data jackknife covariance estimate is then

(CJ)
cd
ab =

∑
A (wA)

c
a(wA)

d
b

[(
ξ̂A

)c
a
− ξ̂ca

][(
ξ̂A

)d
b
− ξ̂db

]

1−∑A (wA)
c
a(wA)

d
b

, (2.11)

the corresponding theoretical estimate,
(
C̃J

)cd
ab

, is constructed analogously to Equation (2.6):

(
C̃J

)cd
ab
(αSN) =

(
4CJ

)cd
ab

+ αSN

(
3CJ

)cd
ab

+ α2
SN

(
2CJ

)cd
ab
. (2.12)

with terms defined as (Philcox et al., 2020):

(
4CJ

)cd
ab

=
1

(RR)ca(RR)db

[
1−∑A (wA)

c
a(wA)

d
b

]
∑

i̸=j ̸=k ̸=l

ninjnknlwiwjwkwl (2.13)

×Θa(rij)Θ
c(µij)Θ

b(rkl)Θ
d(µkl)

[

�
��η
(c)
ijkl + ξijξkl + 2ξikξjl

]
(ωijkl)

cd
ab

(
3CJ

)cd
ab

=
4

(RR)ca(RR)db

[
1−∑A (wA)

c
a(wA)

d
b

]
∑

i̸=j ̸=k

ninjnkwiw
2
jwk

×Θa(rij)Θ
c(µij)Θ

b(rjk)Θ
d(µjk)

[
�
�ζijk + ξik

]
(ωijjk)

cd
ab

(
2CJ

)cd
ab

=
2δabδcd

[(RR)ca]
2
{
1−∑A [(wA)

c
a]

2
}
∑

i̸=j

ninjw
2
iw

2
jΘ

a(rij)Θ
c(µij)[1 + ξij ](ωijij)

cd
ab,
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where (ωijkl)
cd
ab is an additional jackknife weight tensor:

(ωijkl)
cd
ab =

∑

A

[
qAij − (wA)

c
a

][
qAkl − (wA)

d
b

]
. (2.14)

To sum up, in the fiducial (jackknife) pipeline (Figure 2.1), we obtain the shot-noise

rescaling by fitting the model for its jackknife covariance (Equations (2.12) and (2.13)) to

the data (Equation (2.11)). As in the mock approach, this specifically means minimizing the

Kullback-Leibler (KL) divergence between the covariance matrices:

DKL

[
C̃−1

J (αSN),CJ

]
=

1

2

[
tr
(
C̃−1

J (αSN)CJ

)
−Nbins − ln det

(
C̃−1

J (αSN)CJ

)]
. (2.15)

where the model jackknife covariance C̃J(αSN) (Equation (2.12)) is inverted (Philcox et al.,

2020), because the data jackknife covariance matrix CJ (Equation (2.11)) is often not invertible.

The final covariance is obtained by plugging the resulting shot-noise rescaling values into the

full covariance model (Equation (2.6)).

To summarise, the key assumption is that shot-noise rescaling of purely Gaussian contribu-

tions (i.e., ignoring 3-point and connected 4-point functions) can produce a realistic covariance

matrix in configuration space. A theoretical motivation is that non-Gaussian contributions

primarily affect the squeezed configurations involving small-scale correlations, below the bin

width for the 2-point function, therefore not distinguishable from shot noise operating on

infinitesimally small scales. The method has been empirically shown to agree well with

mock-based covariances (O’Connell et al., 2016; Vargas-Magaña et al., 2018; Rashkovetskyi

et al., 2025b).

2.2.2 Split random-random computation

Keihänen et al. (2019) showed that splitting the random catalog into a number of sub-catalogs

of the same size as the data catalog when calculating random–random pairs and excluding pairs

across different sub-catalogs provides the optimal error at a fixed computational cost. The

splitting can be used in RascalC. It gives little to no speed-up and impact on results because

the importance sampling is too far from complete. However, it can be useful for multi-node
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parallelization. This approach has been used for the data-based RascalC computation in

Moon et al. (2023).

A robust implementation of split random-random pair calculations in RascalC would

require considering only quadruples of random points where members of each pair are from

the same sub-catalog, but the pairs can be from different catalogs. However, this has been

found to have little to no impact on the results, probably due to the fact that importance

sampling covers only a small fraction of all possible configurations. At the same time, such

implementation makes the code less efficient and makes it impossible to split the computation

of different catalogs between nodes.

2.2.3 Reconstructed two-point function covariance

Standard BAO reconstruction modifies the correlation function estimator and thus requires

adjustments in the covariance. Standard BAO reconstruction procedures shift the positions of

both the data and random points. Only shifted data (D) is used, whereas the randoms are

kept in two variants: original (R) and shifted (S). The correlation function is estimated via

the Landy-Szalay estimator (Equation (2.1)) with N = D − S instead of D −R, but still RR

in the denominator. This means shifted randoms are to be used in sums representing NN

(starting from Equation (2.2)). Through the expansion of Equation (2.3) these propagate into

the sums for the covariance matrix terms (Equations (2.7) and (2.13)).

Thus in the computations of the covariance matrix terms (Equations (2.7) and (2.13)) for

reconstructed catalogs we use

• the shifted randoms S in the sums (i.e. ri, rj , rk, rl used for binning functions and

correlation function interpolation are the shifted random positions) because they come

from expanding NN , which now involves S and not R;

• non-shifted random counts (i.e., still RR) for normalization12;

12Or correction function(s) in the original implementation of Legendre moments.
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• two-point correlation functions ξij etc. with a different normalization13: having SS

instead of RR in the denominator, i.e.

(
ξ̂in

)c
a
=

(NN)ca
(SS)ca

. (2.16)

For data jackknife covariance (Equation (2.11)), we still use the ordinary normalization of

2PCF (Equation (2.1) with RR in the denominator but N = D − S instead of D −R).

In this approach, we treat the shifted randoms as fixed independently of the realization

of the Universe’s density field. This is not precisely true because the shifts applied to these

randoms depend on the data (observed galaxies). However, this should be a small effect,

because we find the resulting covariances match the mock-based ones well.

Shifted randoms are individual for each mock catalog. Therefore, they can not be defined

clearly for mock-averaged computations. In those cases, we continue to use the non-shifted

randoms everywhere for consistency.

2.2.4 Revisited covariance for projected Legendre moments of 2PCF

Theoretical models of large-scale structure often use multipole (Legendre) moments of the

2-point correlation function instead of its angularly (µ) binned estimates (e.g. Chuang & Wang

(2013); Chen et al. (2024b)). Moreover, the number of multipoles of interest is typically low

— monopole, quadrupole, and sometimes hexadecapole (Maus et al., 2025a,b; Noriega et al.,

2025; Lai et al., 2025; Ramirez-Solano et al., 2025)14. It is then convenient to compress the

correlation by converting the angularly-binned correlation function (with more than 3 angular

bins) to the Legendre moments. Covariance matrices for Legendre multipoles have a lower

dimension, which causes fewer numerical problems and makes them easier to estimate directly.

The covariance matrix model for Legendre moments was developed in RascalC previously

(Philcox & Eisenstein, 2019), but this implementation has several disadvantages.

13In the code, this is implemented by renormalizing the input grid of correlation values ξ(r, µ).

14These references discuss the power spectrum modeling, but the ℓ’th Legendre moment of the correlation
function ξℓ is determined only by the same-order multipole of the power spectrum Pℓ via a spherical Bessel jℓ
transform.
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First, it is not directly compatible with jackknives. In practice, producing the Legendre

moment covariance with optimal shot-noise rescaling based on data (not relying on a mock

sample) requires two separate computations: one for angular (µ) bins with jackknives to tune

the shot-noise rescaling, and another to construct the full covariance matrix model for Legendre

multipoles. This is an inconvenience when one does not intend to use the angularly-binned

correlation function in cosmological inference.

Second, the 2PCF estimation library used in DESI, pycorr15 (De Mattia et al., 2024),

operates under slightly different assumptions. pycorr uses the angularly binned 2-point

correlation function ξ̂ca (Equation (2.1)) estimates with a large but finite number (∼ 100) of

angular bins to compute the radially binned Legendre moments:

ξ̂ℓa = (2ℓ+ 1)
∑

c

ξ̂ca

∫

∆µc

dµLℓ(µ) =
∑

c

ξ̂caF
ℓ
c ; (2.17)

where

F ℓ
c ≡ (2ℓ+ 1)

∫

∆µc

dµLℓ(µ) (2.18)

are the projection factors, which do not depend on radial bins or the tracers involved in the

correlation function. The equations above assume even multipole index ℓ, and binning in

|µ| ∈ [0, 1]16. In contrast, the RascalC estimators developed earlier assume weighting by

Legendre polynomials during pair counting (Philcox & Eisenstein, 2019). This is equivalent to

using infinitesimally narrow angular bins in Equation (2.17). The mismatch in assumptions

between pycorr and RascalC may not cause significant differences in practice, but it is not

desirable.

Third, an additional step was needed to account for realistic survey geometry. The previous

RascalC realization relies on the survey correction function — the ratio of pair counts in a

real survey and a periodic box with the same volume (Xu et al., 2010). This function needed

to be modeled for arbitrary angles (|µ|). A piecewise-polynomial form has been assumed

15https://github.com/cosmodesi/pycorr

16pycorr is capable of binning in µ ∈ [−1, 1], retaining the sign information. But all auto-correlation
functions are necessarily symmetric, and it is easy to “wrap” the counts to |µ| bins in any case as long as the
number of µ bins is even.
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(Philcox & Eisenstein, 2019). Whereas they explain the need for two different polynomials by

the particularly strong redshift-space distortions near the line of sight (|µ| = 1), the choice

of the partition point17 at |µ| = 0.75 has not been motivated and may not be the best. This

might be a minor issue as well, but still a source of extra uncertainty.

We have seen an opportunity to address all three issues and streamline the covariance matrix

computation procedure for extensive usage with DESI. Since the projection in Equation (2.17)

is linear, the covariance matrix for these Legendre moments estimators can be obtained from

the r, µ-binned one given by Equation (2.6):

C̃ℓℓ′
ab ≡ cov

[
ξ̂ℓa, ξ̂

ℓ′
b

]
=
∑

c,d

C̃cd
abF

ℓ
cF

ℓ′
d . (2.19)

A major technical result of this paper is a methodology to compute this covariance matrix

of the Legendre multipoles directly at the level of the summation over point configurations,

rather than having to compute and then project the much larger covariance matrix of fine

angular bins. For this, several quantities need to be inserted into the sums of Equation (2.7),

and we obtain the following 4, 3, and 2-point terms:

4C
ℓℓ′

ab =
∑

i̸=j ̸=k ̸=l

ninjnknlwiwjwkwlΘ
a(rij)Θ

b(rkl)

[

�
��η
(c)
ijkl + 2ξikξjl

]
(2.20)

×
∑

c

Θc(µij)F
ℓ
c

(RR)ca

∑

d

Θd(µkl)F
ℓ′
d

(RR)db
,

3C
ℓℓ′

ab = 4
∑

i̸=j ̸=k

ninjnkwiw
2
jwkΘ

a(rij)Θ
b(rjk)

[
�
�ζijk + ξik

]∑

c

Θc(µij)F
ℓ
c

(RR)ca

∑

d

Θd(µjk)F
ℓ′
d

(RR)db
,

2C
ℓℓ′

ab = 2δab
∑

i̸=j

ninjw
2
iw

2
jΘ

a(rij)
[
1 + ξXY

ij

]∑

c

Θc(µij)F
ℓ
cF

ℓ′
c

[(RR)ca]
2 .

As in Equation (2.7), we include the non-Gaussian higher-point functions in these theoretical

equations. However, we drop them in the current implementation, which we signify by crossing

them out. Sums like
∑

cΘ
c(µ) . . . practically mean finding the angular bin c̃ to which the µ

value belongs and then evaluating the rest only for that one bin. Within the code, we sample

a quadruplet, triplet, or pair of particles and then accumulate their contribution to all the

17I.e. the boundary between the two polynomials, where they join continuously and smoothly.
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Legendre multipole moments in their radial bins.

These 4, 3, and 2-point terms can be combined to the full theoretical estimate analogously

to Equation (2.6), i.e.

C̃ℓℓ′
ab (αSN) =

4C
ℓℓ′

ab + αSN
3C

ℓℓ′

ab + α2
SN

2C
ℓℓ′

ab . (2.21)

This is the single-tracer expression; the version for multiple tracers is provided in Section A.1.2.

For simplicity, we have decided to reuse the r, µ binned jackknife covariance matrix estimate

(Equation (2.11)). An alternative could be a tedious re-derivation of the theoretical jackknife

covariance model with some weights for individual jackknife multipole estimators. The method

only requires this step to calibrate the shot-noise rescaling parameter. The precise choice of the

reference jackknife covariance should not matter as long as the data and model estimators are

treated consistently. Consequently, we project the angularly-binned data jackknife covariance

matrix (Equation (2.11)) similarly to the full covariance (Equation (2.19)):

(CJ)
ℓℓ′

ab =
∑

c,d

(CJ)
cd
abF

ℓ
cF

ℓ′
d (2.22)

and do the same with the theoretical prediction (Equation (2.12)):

(
C̃J

)ℓℓ′
ab
(αSN) =

(
4CJ

)ℓℓ′
ab

+ αSN

(
3CJ

)ℓℓ′
ab

+ α2
SN

(
2CJ

)ℓℓ′
ab
. (2.23)

The jackknife d-point terms (Equation (2.13)) accordingly are transformed to

(
4CJ

)ℓℓ′
ab

=
∑

i̸=j ̸=k ̸=l

ninjnknlwiwjwkwlΘ
a(rij)Θ

b(rkl)

[

�
��η
(c)
ijkl + ξijξkl + 2ξikξjl

]
(2.24)

×
∑

c,d

(ωijkl)
cd
abΘ

c(µij)Θ
d(µkl)F

ℓ
cF

ℓ′
d

(RR)ca(RR)db

[
1−∑A (wA)

c
a(wA)

d
b

] ,

(
3CJ

)ℓℓ′
ab

= 4
∑

i̸=j ̸=k

ninjnkwiw
2
jwkΘ

a(rij)Θ
b(rjk)

[
�
�ζijk + ξik

]

×
∑

c,d

(ωijjk)
cd
abΘ

c(µij)Θ
d(µjk)F

ℓ
cF

ℓ′
d

(RR)ca(RR)db

[
1−∑A (wA)

c
a(wA)

d
b

] ,

(
2CJ

)ℓℓ′
ab

= 2δab
∑

i̸=j

ninj(wiwj)
2Θa(rij)[1 + ξij ]

∑

c

(ωijij)
cc
abΘ

c(µij)F
ℓ
cF

ℓ′
c

[(RR)ca]
2
{
1−∑A [(wA)

c
a]

2
} .
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Similarly to Equation (2.20), sums of the form
∑

c,dΘ
c(µ1)Θ

d(µ2) . . . practically mean finding

the angular bins c̃, d̃ to which the µ1,2 values belong correspondingly and then evaluating the

rest (. . . ) only for that pair of bins. A given set of cells contributes to the covariance of one

pair of angular bins (c, d in Equation (2.7)), but all multipoles (ℓ, ℓ′).

We have also omitted the small disconnected part of the 4-point jackknife term (ξijξkl)

in the main code implementation for practical reasons. This part is estimated in r, µ bins

(Equation (2.13)) by separating it into a product of two sums that need to be computed

for each jackknife region (Philcox et al., 2020). The evaluation becomes less convenient in

Legendre multipoles due to the projection factors inserted into the sum over cells/particles.

We have computed the disconnected term in a couple of realistic setups by using the technique

for r, µ bins18 and projecting the resulting covariance matrix part into the multipole moments

(analogously to Equation (2.22)). We have found that the inclusion of the disconnected term

does not change the shot-noise rescaling values up to the 6th digit after the decimal point. The

optimal shot-noise rescaling parameter is the only link between the disconnected jackknife term

and the final covariance matrix. Therefore, we concluded that the impact of the disconnected

term is practically negligible.

In addition, we give a theoretical justification for neglecting the disconnected term, although

not completely strict. The disconnected jackknife term vanishes exactly if either the correlation

function is constant, the jackknife regions are identical, or the jackknife counts in each region

are the same in each fine bin (Philcox et al., 2020). An arbitrary survey would not meet any

of these conditions exactly, but they likely hold approximately. Therefore, the disconnected

term is expected to be small.

This concludes the description of the new covariance estimators we apply to DESI data

and mocks. To reiterate, the key practical advantage is that a single computation provides

the Legendre covariance with shot-noise rescaling tuned on jackknives. Additionally, the new

estimators use the random-random counts directly, instead of relying on a survey correction

18Storing more data due to keeping many (100) angular (µ) bins for each of 60 jackknife regions. The
number of angular bins could be reduced, but at the price of potential loss of precision.
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function fit for realistic survey geometry (Philcox & Eisenstein, 2019). Therefore, we use this

method for covariance matrix estimation in the rest of this paper.

2.3 Methods of comparison of covariance matrices

Since a covariance matrix is a high-dimensional object, it can be hard to explore and interpret.

Moreover, we run the pipeline multiple times independently and aim to study all the covariance

matrix products to assess their stability and fluctuations. Thus, compact and numerical

comparison measures are instructive.

2.3.1 Interpretable measures of similarity for covariance matrices (original

version, needs to be merged with the other one)

The first characteristic we consider is the Kullback-Leibler (KL) divergence, a measure of

distance between distributions used to fit covariances in RascalC (Section 2.2.1 and Equa-

tion (2.26)). It is generally defined as the expectation value of the logarithm of the ratio of

the two probability distribution functions according to the first distribution:

DKL(P1||P2) =

∫
ln

(
P1(x)

P2(x)

)
P1(x)dx (2.25)

By this expression, KL divergence can be seen as an average difference in log-likelihood. For

two Gaussian distributions with covariance matrices Ci and precision matrices Ψi = C−1
i

describing Nbins observables (correlation function bins in our setup), it can be found as

DKL(Ψ1,C2) =
1

2
[tr (Ψ1C2)−Nbins − ln det (Ψ1C2)]. (2.26)

The KL divergence computed using the RascalC precision matrix and mock sample covariance

is related to the log-likelihood of the sample covariance under the assumption that the RascalC

covariance truly describes the distribution of mock clustering measurements19 (O’Connell

et al., 2016) This is very appropriate for testing the hypothesis that the RascalC precision

19This log-likelihood relation does not hold if the KL divergence is computed between sample precision
(inverse covariance) and theoretical covariance matrices.
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matrix is a precise, unbiased estimate.

The next metric assesses how close the first precision matrix is to the inverse of the second

covariance matrix, and at the same time, a “directional” root-mean-square relative difference

in χ2 given by the two covariance matrices (explained in more detail in Section A.2.2):

Rinv(Ψ1,C2) =
1√
Nbins

∣∣∣
∣∣∣C1/2

2 Ψ1C
1/2
2 − I

∣∣∣
∣∣∣
F

=

√√√√tr
[
(Ψ1C2 − I)2

]

Nbins
. (2.27)

This measure can also be seen as the average relative difference in the errorbars. Moreover, if

the covariance matrix is estimated from a sample with multivariate normal distribution and

the precision matrix is assumed to be true, R2
inv is proportional to the χ2 computed using the

covariance of independent covariance matrix elements (Section A.2.2). Thus, in this case, it

can serve as an approximation of log-likelihood for optimization.

The last metric is akin to the mean reduced χ2 of samples corresponding to one covariance

matrix with respect to the other precision matrix:

χ2
red(Ψ1,C2) =

1

Nbins
tr (Ψ1C2). (2.28)

It can be seen as the mean ratio of χ2 given by the two covariance/precision matrices.

All three metrics are not symmetric, meaning that values for (Ψ1,C2) and (Ψ2,C1) may

be different, so in principle, it might be informative to consider differences both ways. On the

other hand, the sample covariance is less robust than the RascalC result, and its inversion

can be less stable. Moreover, computing each metric twice makes the results more numerous

and less clear. Finally, some additional properties do not hold with the other one, as noted

above. Therefore, we decided to limit ourselves to RascalC precision matrices and sample

covariance matrices.

For a better understanding of the metrics, let us consider the eigenvalues of Ψ1C2 (alter-

natively, one can use Ψ
1/2
1 C2Ψ

1/2
1 which is symmetric) and denote them as λa. We would like
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Ψ1 → C−1
2 thus all λa → 1. The metrics then can be expressed as

DKL(Ψ1,C2) =
1

2

Nbins∑

a=1

[λa − 1− lnλa] ≈
1

4

Nbins∑

a=1

(λa − 1)2, (2.29)

Rinv(Ψ1,C2) =

√√√√ 1

Nbins

Nbins∑

a=1

(λa − 1)2, (2.30)

χ2
red(Ψ1,C2) =

1

Nbins

Nbins∑

a=1

λa. (2.31)

Thus DKL and Rinv accumulate any deviation of λa from 1, although they cannot indicate the

direction of such differences. Note that the quadratic expression for DKL is approximate, so

it is not generally degenerate with Rinv, although as the covariance matrices approach each

other, these two measures become more redundant:

DKL(Ψ1,C2) ≈
Nbins

4
R2

inv(Ψ1,C2). (2.32)

χ2
red can show which covariance matrix is “larger” on average, while deviations in opposite

directions may cancel each other.

Finally, it is important to set expectations for these three comparison measures in the

perfect case. By this, we mean comparing the true precision matrix with the sample covariance

estimated from nS multivariate normal samples following the same covariance. The distribution

of clustering statistics can be assumed normal. This allows us to test the hypothesis that

RascalC can predict the true covariance of the mocks.

In this case, we need to focus on the noise properties of the sample covariance matrix CS

obtained via the standard unbiased estimator for the case when the true mean is not known:

CS,ab =
1

nS − 1

nS∑

i=1

(ξa,i − ξ̄a)(ξb,i − ξ̄b) (2.33)

where a, b denote bin numbers, i, j index sample numbers, and ξ̄a is the estimate of the mean:

ξ̄a ≡ 1

nS

nS∑

i=1

ξa,i. (2.34)

Since the clustering measurements are described well by a multivariate normal distribution,
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their sample covariance matrix follows the Wishart distribution. This provides a reference of

how the metrics behave when the perfect precision matrix is compared to a covariance matrix

estimated from nS samples with Nbins bins (or any other Gaussian observables).

Full derivations are presented in Section A.2; here, we will only provide the results for

mean/expectation values and standard deviations:

⟨DKL(Ψ0,CS)⟩ ≈
Nbins(Nbins + 1)

4(nS − 1)
,

σ[DKL(Ψ0,CS)] ≈
1

2

√
Nbins[(Nbins + 1)(nS + 2Nbins + 2) + 2]

(nS − 1)3
; (2.35)

⟨Rinv(Ψ0,CS)⟩ ≈
√

Nbins + 1

nS − 1
,

σ[Rinv(Ψ0,CS)] ≈
1

nS − 1

√
(Nbins + 1)(nS + 2Nbins + 2) + 2

Nbins(Nbins + 1)
. (2.36)

Naively, one could expect DKL and Rinv to become arbitrarily small as Ψ1 → Ψ0. However,

in reality, they can have large expectation values, especially as the number of bins increases.

χ2
red, however, would behave like the reduced χ2 with Nbins × (nS − 1) degrees of freedom

in this case (see Section A.2.3):

〈
χ2
red(Ψ0,CS)

〉
= 1,

σ
[
χ2
red(Ψ0,CS)

]
=

√
2

Nbins(nS − 1)
. (2.37)

It might seem like DKL and Rinv could be unbiased by multiplying one of the matrices by a

factor similar to the Hartlap factor (Hartlap et al., 2007), but a lack of bias in χ2
red expectation

value suggests that this is not true.

It is notable that a deviation of χ2
red from 1 would contribute to Rinv – see Equations (2.30)

and (2.31); their consequence is also that

∣∣χ2
red(Ψ1,C2)− 1

∣∣ ≤ Rinv(Ψ1,C2). (2.38)

However, the direction of such deviation will not be clear in Rinv, and a nontrivial expectation
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value can make it harder to interpret. This keeps χ2
red useful in many cases.

For additional validation, we also compute the statistical means and standard deviations

for our comparison measures empirically (Monte-Carlo method) with a large number of

multivariate normal samples. We generate Nr = 10, 000 chunks of nS independent samples of

Nbins-dimensional multivariate normal vectors with a (true) unit covariance matrix20. In each

chunk, we estimate the sample covariance and compute the comparison measures between

their true (unit) precision matrix and the sample covariance estimate. Finally, we estimate

the mean and standard deviation for each comparison measure using the obtained Nr random

realizations21.

We choose a preferred (fiducial) value between the theoretical estimate and the corre-

sponding empirical figure in each case. We prefer the theoretical value unless the difference is

more than 3σ. Otherwise, we select the empirical estimate. As suspected, we only find > 3σ

deviations for KL divergence (with larger numbers of bins) and Rinv (for smaller numbers of

bins). The fiducial values are used in Tables 2.12 to 2.17 as reference for comparison measures

between RascalC precision matrices and sample covariances.

2.3.2 Internal convergence assessment

Internal consistency of RascalC covariance matrices in one run and the convergence of the

Monte-Carlo integration procedure are also important to assess quantitatively. We propose to

employ the above-mentioned methods to accomplish this and provide valuable diagnostics that

do not rely on a reference (e.g., sample) covariance and thus can be used in any run, including

the pure data-based one. However, we need to note that such a test can only quantify limited

sources of uncertainty or error, leaving aside the factors like adequacy of the approximations

in the formalism, the precision of the input clustering, and noise in the jackknife covariance

20The value of the true covariance matrix does not matter because it cancels out in each comparison measure
(ignoring the numerical instabilities). The dimension, however, is crucially important. Therefore, we repeat the
procedure for each value of Nbins relevant for comparisons in this work.

21These realizations of covariance matrix comparison measures (for nS = 1000), as well as all estimates of
their means and standard deviations (theoretical, empirical and our fiducial choice between the two for each
case), are provided in the supplementary material: doi:10.5281/zenodo.10895161.
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estimated from the data.

The RascalC code provides multiple partial intermediate results corresponding to practi-

cally non-overlapping sets of quadruples, triples, and pairs of points. These resulting covariance

matrices can be split into two distinct sets of similar size, averaged within them, and compared

using the three metrics. In this case, however, the arguments for the χ2
red weaken – we

can expect Rinv to become arbitrarily low as the number of Monte-Carlo samples increases,

which would limit the reduced chi-squared via Equation (2.38), and it is not as interesting

to understand which of the halves gives a “smaller” matrix. Then DKL also becomes more

redundant with Rinv via Equation (2.32). Therefore, it is reasonable to only show Rinv, which

can be seen as an estimate of root-mean-square relative precision (considered over all directions

in measurement space).

2.3.3 Fisher projection to the space of model parameters

Comparing the full covariance matrices for observables (e.g., binned 2PCF or 2PCF multipoles)

may be overly generic. In such a case, we consider every arbitrary “direction” in the high-

dimensional linear space of these observables. Some of these directions may be unphysical,

whereas others can have little or no connection to the data analysis. To highlight a smaller

number of meaningful, impactful directions, Philcox et al. (2021); Ferreira & Marra (2022)

suggested projecting the covariance matrices into a model-dependent subspace.

We project the covariance matrices to the model parameters through the inverse of the

Fisher matrix for simplicity. For RascalC results, one can use a simple expression neglecting

the inversion bias (Hartlap-like) corrections22:

Cpar
R =

[
M
(
C′obs

R

)−1
MT

]−1

. (2.39)

C′obs
R is the RascalC covariance matrix restricted to the separation and multipole range

of the respective model. This range consitutes N ′
bins observables. M is the Jacobian of the

model, i.e., the matrix of derivatives of radially-binned 2PCF multipoles ξ with respect to the

22As we mentioned in Section 2.2.1, such corrections are small for RascalC.
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parameter vector θ:

Mpa ≡ ∂ξa
∂θp

. (2.40)

For the mock sample covariance, we use a similar expression:

Cpar
S =

nS − 1

nS −N ′
bins +Npars − 1

[
M
(
C′obs

S

)−1
MT

]−1

. (2.41)

nS is the number of mock samples used to estimate the sample covariance, and Npars is the

number of model parameters.

The important difference from Equation (2.39) is that the sample covariance estimate

is more noisy than the semi-analytical model result. Therefore, non-linear matrix inversion

operations cause significant biases. Paillas et al. (2023) considered this problem and gave a

single (Hartlap-like) correction factor in their Eq. (B6), which we use here. The additional

multiplier removes the inversion biases to leading order.

In Section 2.5.4 we additionally exclude the nuisance parameters. We leave out the

corresponding rows and columns from the covariance matrices given by Equations (2.39)

and (2.41). The remaining sub-matrix represents the covariance of the parameters of interest

marginalized over the nuisance parameters.

2.4 Application to DESI-M2 LRG mocks

In this section, we use the described methods on DESI-M2 mocks to assess the performance

and stability of the approach on the actual dataset. We describe the setup first, then perform

intrinsic validation described in Section 2.3.2, look at the shot-noise rescaling values resulting

from jackknife calibration used for the final covariance estimates, validate the RascalC results

by comparison with the mock sample covariance in measurement/observable and parameter

space and finally focus specifically on errorbars on BAO scale.
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2.4.1 Mock catalogs and reconstruction method

We use the 999 effective Zel’dovich (EZ) mocks (Chuang et al., 2015; Zhao et al., 2021) with

cuts corresponding to the DESI LRG sample (Zhou et al., 2023) (described in more detail

in Moon et al. (2023)), which will be referred to as DESI-M2 Firstgen EZ mocks. Sample

covariance based on these does not provide a perfect reference because both the number of

mock catalogs and the level of details in each simulation are limited, but the best one can

have realistically, because increasing one without making the other worse would require even

more significant computational resources. Comparing these is also robust to the mismatch

between the data and mock clustering.

The reconstruction method is also the same as in Moon et al. (2023): the iterative

procedure (Burden et al., 2015) implemented in the IterativeFFTReconstruction algorithm

of the pyrecon package23 with the RecIso convention. Three iterations are used with a

Gaussian smoothing kernel of width 15h−1Mpc. An approximate growth rate and the expected

bias are assumed.

2.4.2 Setup

For this study, we have performed separate runs using 2PCF measured from single LRG DESI-

M2 Firstgen EZ mocks catalogs. This has been repeated 10 times for pre- and post-recon.

In the latter case, individual shifted random catalogs have been used for each mock following

the procedure we described in Section 2.2.3.

Pre-reconstruction galaxies and randoms were assigned unity weights. Post-reconstruction,

FKP weights (Feldman et al., 1994) were used, given by

wFKP =
1

1 + n(z)CP0
(2.42)

where n(z) is the weighted number density (per volume), C is the mean completeness for

the sample, and P0 is a fiducial power-spectrum amplitude. For LRG, C = 0.579 and

P0 = 104(h−1Mpc)3 (Moon et al., 2023). We note that the weighting schemes are not exactly

23https://github.com/cosmodesi/pyrecon
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the same as for real data, but since weights are included explicitly in the covariance estimators,

we expect RascalC to work with any fixed choice applied consistently for 2PCF measurements

and Monte-Carlo integration.

For the importance sampling input, 10 random catalogs were used in pre-recon computations

and 20 in post-recon, like for the RR (SS) pair counts computation for the 2PCF estimates.

These randoms have been concatenated before being provided to RascalC executable. We

assign 60 jackknife regions assigned by a K-means subsampler based on data positions (but not

weights) as in DESI-M2 data, compute the jackknife covariance matrix and use it to calibrate

the shot-noise rescaling.

We note that some validation has been performed in Moon et al. (2023): RascalC

covariance matrix based on 2PCF averaged over all LRG DESI-M2 Firstgen EZ mocks with

no shot-noise rescaling applied (and using unshifted randoms in the post-reconstruction case)

has been compared to the sample covariance matrix in terms of χ2 of BAO fits, best-fit values

and standard deviations of BAO isotropic scale parameter α, yielding a good agreement.

However, there are significant limitations to this approach:

• effect of noise in the input clustering is significantly smaller in 2PCF averaged over

≈ 1000 mocks than in the real data, which is close to a single mock catalog;

• possible differences in other parameters of the BAO model or more generic aspects of

the correlation function have not been assessed.

Single-mock runs address the first issue since each of them is a fair proxy of the data. The

use of covariance matrix comparison metrics from Section 2.3.1 expands on the second one.

We keep the result with mock-average 2PCF, labeled “Average G” (Gaussian), to assess the

importance of the precision of input clustering.

We also consider a shot-noise-rescaled version of the run with mock-averaged clustering,

labeled “Average NG” (non-Gaussian). We note that calibration of an all-mocks run on a

jackknife estimate can be ambiguous or require a repeated computation of all the pair counts

with jackknives, which was not done before because jackknives are not necessary for the sample
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covariance. Thus, we choose to fit the full covariance matrix to the mock sample covariance by

minimizing the KL divergence between them (analogously to the jackknife procedure described

in Section 2.2.1 and Equation (2.26)). Since only one parameter is varied in the fit, a perfect

agreement is still not guaranteed. On the other hand, this setup is clearly idealized and would

be closer to the closest possible match to the mock covariance the RascalC method can

provide. It comprises another useful reference to compare to the data-like performance on

single mocks.

We only consider 45 radial bins, spanning 4 h−1Mpc each from 20 to 200 h−1Mpc. The

RascalC covariances are produced with single angular bins, which is a simplifying assumption

since treating the monopole more precisely in Legendre mode with shot-noise rescaling would

require 2 runs per dataset. The 2PCF measurements for the mock sample covariance use a

more precise monopole estimate provided by pycorr24. We also project them into a BAO

model parameter space using the derivatives near the best fit (Fisher forecast). The model

uses only a separation range from 48 to 148 h−1Mpc.

2.4.3 Internal convergence checks

We perform an intrinsic diagnostic procedure (as described in Section 2.3.2) to ensure that

RascalC integrals converged well in each run and exclude importance sampling random noise

from significant error factors. We found that pre-recon mock 6 and post-recon mock 5 showed

significantly worse consistency than all the rest. Therefore, we have run them twice longer.

After that, all the RascalC results have reached a high and quite uniform level of internal

consistency, as presented in Table 2.1. We only show Rinv, which are easier to interpret as the

root-mean-square relative deviation between different partial estimates of the covariance matrix

(considered over all directions in measurement space). χ2
red are limited via Equation (2.38),

and DKL values are quite close to estimates from Equation (2.32). Due to high consistency in

measurement space, we have not performed a projection to parameter space here. The splitting

of Monte-Carlo subsamples has been done in a few different ways and the non-symmetric

24https://github.com/cosmodesi/pycorr
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Mock no. Rinv pre Rinv post
Average G 1.3× 10−3 3.0× 10−3

Average NG 1.2× 10−3 8.1× 10−3

1 3.7× 10−3 2.3× 10−3

2 3.1× 10−3 2.2× 10−3

3 3.8× 10−3 2.1× 10−3

4 6.3× 10−3 1.9× 10−3

5 4.4× 10−3 1.3× 10−3

6 4.4× 10−3 1.9× 10−3

7 3.7× 10−3 2.0× 10−3

8 3.3× 10−3 1.7× 10−3

9 3.5× 10−3 2.5× 10−3

10 3.5× 10−3 2.2× 10−3

Table 2.1: Intrinsic pre- and post-reconstruction convergence test results in measurement space. Rinv

estimate root-mean-square relative precision, averaged over all different directions in the measurement
space. The numbers provided here are for the full covariance, but the consistency levels of the jackknife
covariance prediction from RascalC are similar. They demonstrate sub-percent stability in RascalC
integrals and ensure that random noise in importance sampling is not a significant source of error, as
these numbers are smaller than deviations observed in further comparisons (Tables 2.3 to 2.6).

metric has been computed both ways (Ψ1C2 and Ψ2C1), but all the values were very close25

and thus have been averaged to one number for each metric. These low (sub-percent) internal

deviations give us confidence that the Monte-Carlo integration procedure in RascalC has

converged well and it will not be a significant error source in further comparison. After

ascertaining this, we have not touched the covariance matrix products to be fair – with real

survey and no mocks, other validation procedures described in this paper are not available.

2.4.4 Shot-noise rescaling values

Next, we look into the shot-noise rescaling values because the final covariance estimates

(with approximate non-Gaussianity) are based on them. The shot-noise rescaling values for

single mocks are obtained by fitting the separate RascalC jackknife covariance prediction

to the jackknife covariance estimate for each mock. For the mock-average clustering, the

full RascalC covariance was fit to the mock sample covariance instead, as discussed in

25In the case of disjoint running (Section 2.2.2) there can be a meaningful difference between splittings
within or between different random sub-catalogs, due to fluctuations in pair counts between these. But here all
the randoms have been concatenated together.
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Mock no. Pre-recon αSN Post-recon αSN

Average NG 1.096 1.038
1 1.096 1.062
2 1.074 1.043
3 1.040 1.034
4 1.077 1.051
5 1.079 1.033
6 1.089 1.030
7 1.080 1.041
8 1.102 1.058
9 1.116 1.033
10 1.080 1.041

1-10 mean±std 1.083± 0.020 1.043± 0.011

Table 2.2: Shot-noise rescaling values for the 10 mocks, on which the final covariance predictions are
based, pre- and post-reconstruction. The “Average NG” value is fit to mock sample covariance, and
the 1-10 are fit to jackknife covariance estimates from single mocks, and the resulting numbers are
consistent. The standard deviation for single mocks is ≈ 2% before and ≈ 1% after reconstruction,
which translates into a similar effect on relative precision of the final covariance matrices due to
rescaling.

Section 2.4.2.

The shot-noise rescaling values are gathered in Table 2.2. We note that all of them are

greater than one (which corresponds to purely Gaussian covariance), in accordance with our

expectation that the non-Gaussianity expands the errorbars. Moreover, the mean shot-noise

rescaling of the 10 single mocks is ≈ 4 standard deviations larger than 1 both before and after

reconstruction. The values obtained from the jackknife and mock covariance are consistent.

After reconstruction, the shot-noise rescaling decreases for every mock. The pre-recon mean is

larger than the post-recon one by ≈ 1.8 standard deviations. The scatter after reconstruction

is also smaller than before. These deviations can be caused by the random fluctuations in the

input 2PCF estimates, noise in jackknife covariances, and differences in shifted randoms (for

post-recon only).

The key conclusion is that we have obtained the shot-noise rescaling parameter for a

data-like setup (single mock runs) with a percent-level precision. This maps into a similar or

smaller relative deviation in the rescaled covariance matrices since the 2-point term has the

strongest scaling, ∝ α2
SN, and the 4-point term remains the same (Equation (2.6)).
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Mock no. DKL(ΨR,CS) Rinv(ΨR,CS) χ2
red(ΨR,CS)

Average G 0.793 0.2922 1.1422
Average NG 0.537 0.2136 0.9906

1 0.721 0.2252 0.9600
2 0.602 0.2234 0.9992
3 0.571 0.2329 1.0477
4 0.548 0.2191 0.9991
5 0.755 0.2302 0.9830
6 0.727 0.2315 0.9723
7 0.695 0.2254 0.9675
8 0.530 0.2085 0.9695
9 0.610 0.2140 0.9291
10 0.518 0.2106 0.9895

1-10 0.628± 0.089 0.2221± 0.0087 0.982± 0.031

Perfect Ψ 0.519± 0.024 0.2147± 0.0049 1.0000± 0.0067

Table 2.3: Results of general measurement-space comparison between the RascalC results (R) and
mock sample covariance (S) before reconstruction. The last row provides the perfect-case reference –
expectation values and standard deviations for the three metrics, if the RascalC precision matrix
truly described the distribution of the mock correlation functions.

2.4.5 Measurement-space validation

Now we proceed to comparison with the sample covariance matrices as reference, keeping

in mind they are not devoid of noise so not all the comparison measures can be ideal. We

consider the higher-dimensional space of observables first, where the effects of sample variance

are quite significant. It consists of 45 bins of 2PCF, spanning 20–200 h−1Mpc linearly with a

bin width of 4 h−1Mpc.

Sample covariances for all original bins have been estimated using nS = 999 2PCF

measurements from all the DESI-M2 Firstgen EZ mocks and the standard unbiased estimator

(Equation (2.33)). The procedures have been similar for pre- and post-recon.

The comparison measures between the RascalC precision matrices (estimated via Equa-

tion (2.9)) and the sample covariance matrices have been computed and are presented in

Table 2.3 for pre-reconstruction and Table 2.4 for post-reconstruction. First of all, there

are fluctuations in the comparison measures involving the single-mock results, stemming

from the input 2PCF estimates, jackknife covariances, and differences in shifted randoms

(for post-recon only) – the same causes as for scatter in αSN discussed in Section 2.4.4. The
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Mock no. DKL(ΨR,CS) Rinv(ΨR,CS) χ2
red(ΨR,CS)

Average G 0.62 0.247 1.0653
Average NG 0.57 0.225 1.0028

1 0.94 0.256 0.9463
2 0.63 0.229 0.9725
3 0.72 0.266 1.0031
4 0.61 0.222 0.9657
5 0.62 0.229 0.9924
6 0.65 0.231 0.9817
7 0.62 0.226 0.9706
8 0.61 0.222 0.9631
9 0.77 0.281 1.0214
10 0.88 0.314 1.0162

1-10 0.70± 0.12 0.247± 0.031 0.983± 0.024

Perfect Ψ 0.519± 0.024 0.2147± 0.0049 1.0000± 0.0067

Table 2.4: Results of general measurement-space comparison between RascalC results (R) and
mock sample covariance (S) after reconstruction. The last row provides the perfect-case reference –
expectation values and standard deviations for the three metrics, if the RascalC precision matrix
truly described the distribution of the mock correlation functions.

individual pre-reconstruction covariances appear to agree with the mock sample better than

the post-reconstruction covariances. The covariance with mock-averaged clustering and no

shot-noise rescaling, on the contrary, gives a closer agreement after reconstruction. Before

reconstruction, any individual shot-noise rescaled covariance shows better agreement than

the Gaussian mock-averaged clustering run; after reconstruction, it is very often worse. With

mock-averaged clustering, the shot-noise rescaling is clearly beneficial for pre-reconstruction

and less so for post-reconstruction. This may be a hint that the shot-noise rescaling might not

be doing as well after reconstruction as before.

Compared to the perfect case, RascalC typically performs worse (higher DKL and Rinv,

reduced chi-squared further from one), which we expect since the code (and the mocks) involve

(different) approximations. We note that, on average, the comparison metrics are within a

couple of standard deviations of the expectation value for the true underlying covariance

matrix. On the other hand, it is the larger standard deviation in RascalC results that is

allowing this conclusion, and reducing the noise factors causing it (input 2PCF fluctuations,

single jackknife covariance) may allow us to reach a closer agreement in future works.
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2.4.6 Parameter-space validation

In this section, we project the covariance into a lower-dimensional and more physically

meaningful space of BAO model parameters. Lower dimensionality makes the reference values

for comparison metrics clearer, and the results become easier to interpret. In addition, the

correlation function modes that are not physically possible or do not affect the parameter

constraints are removed from consideration, which leaves only real and important “directions”

for consideration.

We choose a commonly used BAO model26 (Ross et al., 2017; Ata et al., 2018) with a

scalable template ξ0 and three nuisance polynomial terms:

ξmod(r) = Bξ0(αBAOr) +A0 +A1/r +A2/r
2, (2.43)

comprising Npars = 5 parameters: B,A0, A1, A2, αBAO.

Instead of performing full fits, we use the Fisher matrix formalism. This can be seen as

less precise than full fits on every mock or MCMC using a 2PCF likelihood. On the other

hand, the parameter distribution is not Gaussian when the model is not a linear function

of parameters, which makes linear approximation within the Fisher matrix formalism more

suitable for the comparison methods we have discussed.

We estimate the parameter covariance matrix as the inverse of the Fisher matrix:

Cpar
S =

nS − 1

nS −N ′
bins +Npars − 1

[
M
(
C′meas

S

)−1
MT

]−1
(2.44)

where the measurement-space mock sample covariance matrix C ′meas
S is cut to the N ′

bins = 25

bins spanning separations from 48 to 148 h−1Mpc used in BAO fits, and M is the matrix of

derivatives of binned 2PCF vector ξ with respect to parameters p:

Mca ≡ ∂ξa
∂pc

. (2.45)

The derivatives have been taken at the best-fit parameters for the mock-averaged clustering

measurements (separate before and after reconstruction).

26https://github.com/cosmodesi/BAOfit_xs/
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Mock no. DKL(ΨR,CS) Rinv(ΨR,CS) χ2
red(ΨR,CS)

Average G 0.026 0.138 0.992
Average NG 0.027 0.135 0.925

1 0.104 0.236 0.855
2 0.065 0.193 0.911
3 0.022 0.122 0.941
4 0.013 0.099 0.962
5 0.127 0.250 0.883
6 0.091 0.232 0.866
7 0.095 0.229 0.861
8 0.025 0.128 0.918
9 0.042 0.165 0.876
10 0.016 0.107 0.944

1-10 0.060± 0.042 0.176± 0.059 0.902± 0.039

Perfect Ψ 0.0075± 0.0028 0.078± 0.014 1.000± 0.020

Table 2.5: Results of BAO parameter space (B,A0, A1, A2, αBAO) comparison between RascalC
results (R) and mock sample covariance (S) before reconstruction. The last row provides the perfect-
case reference – expectation values and standard deviations for the three metrics, if the RascalC
precision matrix truly described the distribution of the mock correlation functions.

Note that Equation (2.44) is scaled by a correction factor according to Eq. (B6) in Paillas

et al. (2023) to account for biases caused by both matrix inversions. This provides an unbiased

(although not noiseless) estimate of the true underlying covariance in parameter space as

validated in Section A.2.4.

A similar but simpler procedure was performed with RascalC products:

Ψpar
R,cd ≈ M

(
C′meas

R

)−1
MT , (2.46)

where C′meas
R was also cut to the 25 bins spanning separations from 48 to 148 h−1Mpc used in

BAO fits. There is a bias correction matrix D for RascalC (Equation (2.9)), but for the

results presented here, absolute values of its eigenvalues are ≲ 10−3; thus, we have decided to

neglect this correction factor.

The comparison measures have been computed between the projected matrices and are

presented in Table 2.5 for pre-recon and Table 2.6 for post-recon. Generally, lower expectation

values of DKL and Rinv for perfect precision make these numbers for RascalC easier to

interpret. There is a less apparent difference between pre- and post-recon. A notable exception

54



Mock no. DKL(ΨR,CS) Rinv(ΨR,CS) χ2
red(ΨR,CS)

Average G 0.020 0.134 1.087
Average NG 0.014 0.113 1.049

1 0.122 0.252 0.907
2 0.036 0.171 1.002
3 0.041 0.202 1.082
4 0.015 0.106 0.981
5 0.030 0.149 0.999
6 0.029 0.144 0.974
7 0.021 0.125 0.981
8 0.014 0.105 0.977
9 0.095 0.329 1.154
10 0.096 0.327 1.155

1-10 0.050± 0.039 0.191± 0.085 1.021± 0.082

Perfect Ψ 0.0075± 0.0028 0.078± 0.014 1.000± 0.020

Table 2.6: Results of BAO parameter space (B,A0, A1, A2, αBAO) comparison between RascalC
results (R) and mock sample covariance (S) after reconstruction. The last row provides the perfect-case
reference – expectation values and standard deviations for the three metrics, if the RascalC precision
matrix truly described the distribution of the mock correlation functions.

is that all χ2
red for rescaled (with mock-averaged and single-mock clusterings) pre-recon are

significantly less than 1 (meaning RascalC “overestimates” the covariance then). In other

cases, mimicking non-Gaussianity gives a slight improvement for mock-averaged clustering,

but higher noise in 2PCF and jackknife covariance in single-mock estimates often drives the

agreement with mock sample covariance worse than in the mock-averaged Gaussian estimate.

Overall, RascalC single-mock results are within < 2σ (dominated by the standard

deviation of the perfect reference values, except the reduced chi-squared before reconstruction,

which deviates by ≈ 2.2 std (combined). However, the scatter in these numbers is quite

significant (e.g. a few percent in root-mean-square relative error Rinv), and we should try to

reduce it in future work.

2.4.7 Errorbars on BAO scale parameter

Since the scale parameter αBAO is the important output of the current BAO analysis (Equa-

tion (2.43)), we have decided to extract its errorbar, marginalized over the other four parameters.

This is quite trivial after the previous subsection – we only needed to invert the RascalC
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σ(αBAO) Pre-recon Post-recon
Sample cov 0.01590± 0.00036 0.01459± 0.00033

Average G 0.01522 0.01360
Average NG 0.01596 0.01392

1 0.01616 0.01424
2 0.01598 0.01395
3 0.01583 0.01410
4 0.01609 0.01405
5 0.01595 0.01385
6 0.01613 0.01396
7 0.01594 0.01389
8 0.01621 0.01400
9 0.01652 0.01402
10 0.01618 0.01405

1-10 mean±std 0.01610± 0.00019 0.01401± 0.00011

Table 2.7: Pre- and post-reconstruction errorbars on αBAO from Fisher forecast. The mean of 10
single pre-reconstruction catalogs agrees with the sample covariance within a standard deviation. For
post-reconstruction, the difference is within 2 standard deviations.

parameter-space precisions

Cpar
R =

(
Ψpar

R

)−1 (2.47)

neglecting the inversion bias, since it is expected to be even smaller than before with the

smaller size of the matrices. Then we extract the marginalized errorbars from all the parameter

covariances as

σ(αBAO) =
√
Cpar
αα . (2.48)

For the sample covariance, we expect the variance of CS,αα to nearly follow Equation (A.10):

Var
[
Cpar
S,αα

]
≈ 2

nS − 1

(
Cpar
S,αα

)2
(2.49)

and therefore the standard deviation of σ(αBAO) of

σ[σ(αBAO)] ≈
σ(αBAO)√
2(nS − 1)

, (2.50)

resulting in relative precision of 2.2%. This has been confirmed in Section A.2.4.

The resulting errorbar (Fisher) forecasts are provided in Table 2.7 and also presented as a

scatter plot in Figure 2.3. We can notice that in any case, the post-recon precision is expected
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Figure 2.3: Pre- and post-reconstruction errorbars on αBAO from Fisher forecast plotted against
each other. Compared to the mock-averaged Gaussian run (Average G), the mock-averaged rescaled
run (Average NG) and single-mock predictions with rescaling are closer to the sample covariance. The
horizontal (pre-reconstruction) agreement is closer than the vertical (post-reconstruction) one, but
even the latter falls within ≈ 2σ. Note that the range of the axes is quite narrow, comprising only
≈ 9% relative difference in errorbar before reconstruction and ≈ 7% after.
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to be higher than pre-recon. In both pre-recon and post-recon, σ(αBAO) in the mock-averaged

clustering run without shot-noise rescaling are noticeably smaller than predicted from the

sample covariance and are brought closer in the rescaled results. Mock-averaged clustering

with fit shot noise and single mock runs gives very similar numbers. The key conclusion is

that single-mock runs are in good agreement with the sample covariance on σ(αBAO), with

a remarkably close match before reconstruction (just fractions of standard deviation) and a

difference of ≈ 2 standard deviation after reconstruction. This gives assurance that data-based

RascalC covariances are on par with mock sample one for isotropic BAO fits.

2.5 Application to DESI DR1 mocks

2.5.1 DESI DR1 simulations and methods

In this section, we briefly describe the simulations we use and their processing steps.

Mocks

In this work, we mainly rely on effective Zel’dovich mocks (EZmocks) (Chuang et al., 2015;

Zhao et al., 2021). We use the suite of 1000 catalogs representative of DESI DR1 (Zhao et al.,

2025). These mocks are more approximate than those relying on full N -body simulations.

However, they are fast enough to make a large number of simulations in 6 h−1Gpc boxes

covering the whole volume of DESI DR1 without replications.

For shot-noise rescaling investigation (Section 2.5.3) we also used more realistic Abacus-2

mocks. They are based on the AbacusSummit suite of N -body simulations (Maksimova

et al., 2021) produced with the Abacus code (Garrison et al., 2021). The halos have been

identified with the CompaSO halo finder (Hadzhiyska et al., 2022). The galaxy catalogs have

been produced within halo occupancy distribution (HOD) formalism using the AbacusHOD

framework (Yuan et al., 2022). More details on the suite representing DESI DR1 can be

found in DESI Collaboration et al. (2025f). These simulations have two disadvantages: only

25 realizations and smaller (2 h−1Gpc) boxes requiring replications to cover the DESI DR1
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volume.

The factors of number and volume are crucial for covariance matrices. The number of

mocks sets the relative precision of the sample covariance estimate, which is the only reference

we have for comparison. By replications, we mean different parts of the final galaxy catalog

made from the same part of the original simulation. These parts can become too strongly

correlated and therefore bias the sample covariance estimate. This motivates our choice of

EZmocks for the majority of this work.

Fiber assignment modeling

An important novel aspect of this work is the application of semi-analytical covariance matrices

to mocks that incorporate a model of fiber assignment effects.

We mainly use the approximate algorithm called “fast fiber assign” or “fast fiber assignment”

(FFA) (Hanif et al., 2025; Bianchi et al., 2024). It emulates the DESI fiber assignment algorithm

using less computational resources (DESI Collaboration et al., 2025f).

For shot-noise rescaling investigation (Section 2.5.3) we also used the mock realizations of

the DESI fiber assignment algorithm. They involve alternate merged target ledgers, thus the

shortcut AMTL (Lasker et al., 2025). However, this method is prohibitively slow to process

all 1000 EZmocks (DESI Collaboration et al., 2025f).

These fiber assignment algorithms vary in how they assign weights to galaxies and random

points to mitigate incompleteness effects. As discussed in section 5.1 of Ross et al. (2025),

the DESI assignment completeness can be split into two components, one of which can be

modeled by assigning weights to randoms. However, the FFA algorithm only determines the

total assignment completeness per galaxy. Consequently, the weights per galaxy resulting

from FFA have greater variance than for AMTL mocks and the DESI DR1 LSS catalogs. As

we mentioned earlier, different weighting methods for data and random points can affect the

shot-noise rescaling values (Equation (2.4)).

Effects of fiber assignment may pose additional challenges to the method because it

involves anisotropic pair-wise sampling, depending both on the density of the targets and
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the number of survey passes in the region (Bianchi et al., 2024). We provide the RascalC

code with the random catalog and clustering estimate affected by fiber assignment (see the

flowchart in Figure 2.1), but the expansion leading to Equation (2.7) (and Equation (2.13))

uses the survey-wide correlation function(s) to calculate the ensemble averages of products of

overdensities, and the shot-noise rescaling (Equation (2.4)) is also global. It is challenging to

let the correlation function or shot-noise rescaling vary across the survey (with on-sky position

or redshift) without complicating the covariance matrix model too much and introducing too

many parameters.

Fiber assignment incompleteness might also cause issues with the jackknife. Ideally, we

would like each sub-region to have a distribution of the number of passes representative of

the full survey. This is challenging to achieve, and the current jackknife assignment does not

guarantee that.

Reconstruction

We apply the semi-analytical covariance matrix estimators before and after standard BAO

reconstruction (pre- and post-recon). The reconstruction methodology follows the findings of

the DESI DR1 optimal reconstruction task force (Chen et al., 2024a; Paillas et al., 2025): the

RecSym mode of the IterativeFFTReconstruction algorithm (Burden et al., 2015) from the

pyrecon package27 with smoothing scale of 15h−1Mpc.

Theoretical modeling and fitting

Our first analysis of interest is DESI 2024 baryon acoustic oscillations (DESI Collaboration

et al., 2025f). We use the same anisotropic (2D) model with BAO power spectrum template

and spline-based broadband terms (Chen et al., 2024b). The fit uses monopole and quadrupole

in radial bins spanning s = 48− 152h−1Mpc.

The second analysis of interest is DESI 2024 full-shape (DESI Collaboration et al., 2024b).

This presents more difficulties because it primarily uses power spectra and the methodology

27https://github.com/cosmodesi/pyrecon
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has not been standardized for correlation functions. Nevertheless, we use similar models relying

on the velocileptors Lagrangian perturbation theory model (Chen et al., 2020, 2021; Maus

et al., 2025b) with maximum freedom and standard prior basis. Two variants correspond

to the power spectrum template choice. One approach is “ShapeFit”. It is a compression

method using parametric variations of a single power spectrum template evaluated at the

reference cosmology (Brieden et al., 2021). The other is “full modeling”, meaning a linear power

spectrum from CLASS Boltzmann code (Blas et al., 2011). The fit uses monopole, quadrupole

and hexadecapole in radial bins spanning s = 28− 152h−1Mpc.

These analyses inform our work in two ways.

First, the two fit ranges set our choice of sub-matrices of correlation function multipoles

covariances for comparison. In other words, we restrict the covariance matrices to the multipoles

and radial bins used in the fitting. This gives us an informed choice for smaller sub-matrices

to see which parts of the covariance matrix are captured better by the semi-analytic method.

Second, we project the covariance matrices into the parameter spaces of these three models.

We do this with the inverse Fisher matrix as described in Section 2.3.3. It is very important

to see that the errorbars on physical parameters are predicted reliably through the RascalC

covariances, although this analysis may not generalize to alternative models.

We use the desilike package28 for the evaluation of all three models (including polynomial

emulators for the full-shape models) and fitting the data.

2.5.2 Setup for semi-analytical covariance matrices

We consider three galaxy types (tracers) in three different redshift ranges. We use luminous

red galaxies (LRG) with z = 0.8− 1.1, emission line galaxies (ELG) (Raichoor et al., 2023)

with z = 1.1 − 1.6 and magnitude-limited bright galaxy survey (BGS) (Hahn et al., 2023)

with z = 0.1− 0.4. These correspond to LRG3, ELG2 and BGS samples in the main DESI BAO

papers (DESI Collaboration et al., 2025f,e) respectively. The summary of tracers and redshift

bins is provided in Table 2.8.

28https://github.com/cosmodesi/desilike
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Tracer LRG ELG BGS
z range (0.8, 1.1) (1.1, 1.6) (0.1, 0.4)

Designation in DESI Collaboration et al. (2024a, 2025f) LRG3 ELG2 BGS
EZmocks snapshot z 1.1 1.325 0.2

Table 2.8: Tracers and redshift bins used in this chapter. For LRG and ELG, which have multiple bins
unlike BGS, we have selected the densest ones, as shot-noise seems easier to capture with RascalC.
We did not include the quasars (QSO) for the same reason. The snapshot redshifts were used to
construct the power spectrum templates.

We apply the data pipeline29 (Figure 2.1) to single mock catalogs, as was done in previous

works. This implies using the random files, full and jackknife correlation function estimates spe-

cific to that catalog. We use 1030 different realizations of EZmocks to quantify the fluctuations

in the semi-analytical results due to realistic random variations in the input quantities.

We process the North and South Galactic Caps (NGC and SGC) separately. DESI DR1

data has been processed in the same manner. This allows different shot-noise rescaling values,

reflecting different completeness patterns in these parts of DESI DR1. Then we combine

the two covariances into a single matrix for the full survey, assuming the Galactic Caps are

uncorrelated31 (Section A.3).

We create the covariance matrices for monopole, quadrupole and hexadecapole in 45 radial

bins between 20 and 200 h−1Mpc (each 4 h−1Mpc wide). We exclude the s < 20h−1Mpc bins

because they impede the convergence of the covariance matrices. Moreover, we expect the

shot-noise rescaling to become inadequate on small scales.

29The data scripts are available at https://github.com/cosmodesi/RascalC-scripts/tree/DESI2024/
DESI/Y1, pre and post directories for single-tracer covariances before and after reconstruction, respectively.
Our analogous single-mock scripts (with only minor differences) are in https://github.com/cosmodesi/
RascalC-scripts/tree/DESI2024/DESI/Y1/EZmocks/single, pre and post folders.

30The number is a compromise between getting good statistics and saving computing time.

31In the EZmocks NGC and SGC are constructed from separate realizations Zhao et al. (2025), so they are
independent. As a result, we do not validate this assumption for the data.
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2.5.3 Intrinsic tests of the method

Having described the setup for the current RascalC application to EZmocks, we detail the

quality checks we perform before comparing the results with the mock sample covariance.

Intrinsic convergence and computation time

We have two specific convergence criteria for each RascalC computation. The first is the

eigenvalue test performed by the code on both full and jackknife covariance matrix terms

(Equations (2.20) and (2.24)). The desired condition is that the minimal eigenvalue of the

4-point term is larger than minus the minimal eigenvalue of the 2-point term (Philcox et al.,

2020). The second is the positive definiteness of the final covariance matrix estimate. We do

not use the covariance matrix model that fails either of these tests.

In addition, we have a quantitative measure of convergence without strict thresholds. As

in Section 2.4.3, we use the Rinv comparison measure (Equation (2.27)) between the different

estimates of each RascalC covariance matrix from separate halves of the Monte-Carlo

integration samples. We found several high outliers compared to other mock realizations of

the same tracer.

We repeat the computation on the mocks with the convergence issues mentioned before.

Then we post-process the data from the second computation and the data combined from the

two computations. We choose the one that first satisfies the two strict criteria and then gives

a lower Rinv value.

After this, we find that LRG covariance matrices reached Rinv ≤ 2.0% convergence within 4

node-hours (512 core-hours32) on the NERSC Perlmutter supercomputer. The ELG covariance

matrices reached Rinv ≤ 2.9% convergence within 10 node-hours (1280 core-hours). BGS

reached Rinv < 11.5% convergence within 12 node-hours (1536 core-hours).

The computations have become longer relative to Section 2.4.3, whereas Rinv convergence

figures have worsened (i.e. increased). In this previous work, the maximum Rinv was 0.63%.

32Hereafter the figure is for the single computation, i.e., effectively twice longer in a few cases. We count
physical cores and not hyperthreads. Later profiling also showed a possibility of ≈ 2× improvement by using
64 threads and physical cores instead of 128.
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The number of 4-point configurations contributing to the sums (Equations (2.20) and (2.24))

for LRG NGC or SGC in this work (2.4×1012) is very close to the analogous number for full

LRG in Section 2.4.3 (2.5×1012), where the sums (Equations (2.7) and (2.13)) were evaluated

for a single angular bin.

The processing of each 4-point configuration becomes longer in Legendre mode. This can

be expected because, as mentioned earlier, a given configuration contributes only to one pair of

angular bins, but to all Legendre multipoles. Other factors, like CPU differences, parallelism

efficiency, and a larger number of 3- and 2-point configurations in this work, may also affect

the runtimes.

The increase of the Rinv convergence measure can be primarily attributed to three times

more observables in the covariance matrix. In this section, we have the same number of

radial bins as in Section 2.4, but three multipoles instead of only the monopole. A higher-

dimensional covariance matrix requires more configurations sampled for the same relative

precision. Additionally, ELG and especially BGS are more challenging due to the increasing

importance of the 4-point term relative to the 3- and 2-point terms. The more points, the

more configurations need to be sampled for the same precision of the term. Still, the Rinv we

obtained are significantly smaller than the expected deviation of the mock sample covariance

estimate from the true covariance matrix (Rinv ≈ 37%33).

Shot-noise rescaling values

Our method uses a rescaling of the shot noise contribution to account for differences between

the true small-scale contributions and our Gaussian approximation, as we pointed out in

Section 2.2.1. After reaching a relatively uniform convergence level in the previous section, we

should investigate the values of the shot-noise rescaling parameter.

Table 2.9 shows the shot-noise rescaling values obtained for mocks and DESI DR1 data

according to the fiducial procedure (Figure 2.1). Interestingly, we find that all the shot-noise

33As we show later in Table 2.12, this number is based on 1000 mock realizations. For a fixed number of
samples, the relative precision of the sample covariance also worsens with the number of observables.
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αSN
NGC SGC

Mocks Data Mocks Data
LRG pre-recon 0.743± 0.012 0.865 0.7935± 0.0081 0.953
LRG post-recon 0.770± 0.010 0.836 0.809± 0.011 0.969
ELG pre-recon 0.3757± 0.0043 0.687 0.4018± 0.0014 0.718
ELG post-recon 0.3789± 0.0044 0.693 0.4051± 0.0044 0.737
BGS pre-recon 0.792± 0.012 0.855 0.8198± 0.0091 0.897
BGS post-recon 0.812± 0.012 0.872 0.8447± 0.0095 0.934

Table 2.9: Shot-noise rescaling values αSN for mocks (10 realizations of FFA EZmocks) and data.

αSN Data AMTL (correct) FFA (approximate) Complete
Abacus EZmocks Abacus EZmocks Abacus

LRG NGC 0.865 0.845 0.886 0.721 0.758 0.934
LRG SGC 0.953 0.954 0.961 0.781 0.784 0.962
ELG NGC 0.687 0.649 0.672 0.378 0.380 0.965
ELG SGC 0.718 0.707 0.744 0.405 0.403 0.968

Table 2.10: Shot-noise rescaling values αSN (before reconstruction) for the data and two different
types of mocks (Section 2.5.1) with two different fiber assignment models (Section 2.5.1). “Complete”
designates mocks before fiber assignment. We use a single mock realization for each category.

rescaling values are smaller than 1; i.e., the jackknife variations are smaller than predicted

by the Gaussian approximation with standard Poisson shot noise. Previous mock studies

(O’Connell et al., 2016; O’Connell & Eisenstein, 2019; Philcox et al., 2020, our Section 2.4.4),

on the contrary, obtained shot-noise rescaling values greater than 1.

We also see that the shot-noise rescaling values are significantly lower for mocks than for the

data. The difference is most pronounced for ELGs, which have the lowest shot-noise rescaling

values for both mocks and data. ELGs are also impacted most by the fiber incompleteness

effect due to their lower priority compared to other dark-time targets, LRG and QSO Raichoor

et al. (2023). This suggests that the low shot-noise rescaling is related to fiber assignment.

To test whether fiber assignment is the main cause for low and different shot-noise rescaling

values, we have performed additional RascalC computations using more realistic Abacus

mocks and the DESI fiber assignment algorithm (AMTL). We only used one realization for

LRG and ELG in each case to save computing time.

Table 2.10 shows the shot-noise rescaling values for data and different mocks (Abacus or
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αSN
NGC SGC

Jackknife Mock sample Jackknife Mock sample
LRG pre 0.743± 0.012 0.7417± 0.0038 0.7935± 0.0081 0.7906± 0.0045

LRG post 0.770± 0.010 0.7446± 0.0029 0.809± 0.011 0.7945± 0.0032

ELG pre 0.3757± 0.0043 0.3757± 0.0013 0.4018± 0.0014 0.4077± 0.0016

ELG post 0.3789± 0.0044 0.3751± 0.0013 0.4051± 0.0044 0.4067± 0.0017

BGS pre 0.792± 0.012 0.7916± 0.0068 0.8198± 0.0091 0.827± 0.014

BGS post 0.812± 0.012 0.8148± 0.0070 0.8447± 0.0095 0.844± 0.013

Table 2.11: Shot-noise rescaling values for the single-mock runs calibrated on jackknife (Figure 2.1)
and mock sample covariances (Figure 2.2).

EZmocks) with different fiber assignment models (FFA or AMTL). We also include an Abacus

mock before fiber assignment (“complete”). We see that the fiber assignment modeling method

makes a bigger difference than the type of mocks. The approximate fast fiber assignment

gives the lowest shot-noise rescaling values. The DESI fiber assignment algorithm applied to

the mocks (AMTL) gives αSN very similar to the data. The complete Abacus mocks have

larger shot-noise rescaling values than data and fiber-assigned mocks. This confirms the fiber

assignment as a key factor affecting the αSN parameter.

The discrepancy in shot-noise rescaling values also raises concerns about the quality of

approximations in the FFA algorithm. However, of all the mock types, only EZmocks processed

with FFA are numerous enough for a precise sample covariance estimate. Therefore, we

continue using them in the remainder of this paper.

We performed the final consistency tests of the shot-noise optimization procedure in light

of the concerns about fiber assignment and jackknife discussed in Section 2.5.1. We optimized

the shot-noise rescaling based on mock sample covariance (the process is shown schematically

in Figure 2.2). We show the resulting values along with the baseline, jackknife-based ones in

Table 2.11, and find them very close for all cases. In other words, calibration of shot-noise

rescaling on jackknives still brings us close to an optimal fit on the mocks. With that, we

have decided to proceed further with the validation process using the jackknife-calibrated

shot-noise rescaling values. This will show how close this nearly optimal fit is to the mock

sample covariance.
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2.5.4 Comparison between semi-analytical and mock sample covariance

matrices

Thus, we reach the last validation part: comparison of the semi-analytical covariances obtained

from single mock catalogs with the mock sample covariance matrices. We compute three

similarity measures (Section 2.3.1) between these covariance matrices for each tracer before and

after standard BAO reconstruction (pre- and post-recon). Instead of presenting 10 numbers

(corresponding to each RascalC realization) for each case in the paper, we provide their

mean and standard deviation. The full set of comparison measure values is available in the

supplementary material34. We also provide the “perfect” reference row, listing the statistical

properties of the similarity measures between the true covariance and a mock sample covariance

matrix based on their dimension (also obtained in Section 2.3.1).

We note that the standard deviation in the “perfect” row is different and independent

from the others. The “perfect” standard deviation characterizes the distribution of the

random difference between the sample covariance estimate from 1000 realizations and the true

covariance. In each other row (tracer + pre- or post-recon combination), the sample covariance

estimate is fixed, and the standard deviation describes the scatter resulting from 10 different

RascalC covariance realizations.

Ideally, every RascalC covariance matrix would be consistent with the true covariance.

To see whether this is the case, we compute the difference between each comparison measure

for each RascalC covariance realization and the corresponding “perfect” mean in “perfect”

standard deviations. We summarize the 10 resulting quantities by the mean and standard

deviation as well, and provide them below the summary of the similarity measure itself. This

sets the common structure for all tables in this section (i.e., Tables 2.12 to 2.17.).

Observables

We begin with the covariances for correlation function multipoles, in other words, in the space

of observables.

34doi:10.5281/zenodo.10895161
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DKL(C
−1
R ,CS) Rinv(C

−1
R ,CS) χ2

red(C
−1
R ,CS)

Perfect 4.817± 0.070 0.3690± 0.0031 1.0000± 0.0039

LRG pre-recon 4.856± 0.029 0.3678± 0.0049 0.989± 0.016
(0.55± 0.41)σ (−0.4± 1.6)σ (−2.7± 4.1)σ

LRG post-recon 4.977± 0.050 0.3581± 0.0034 0.957± 0.014
(2.27± 0.70)σ (−3.5± 1.1)σ (−11.3± 3.6)σ

ELG pre-recon 4.811± 0.024 0.3700± 0.0055 1.000± 0.015
(−0.09± 0.34)σ (0.3± 1.8)σ (0.1± 3.8)σ

ELG post-recon 5.001± 0.018 0.3701± 0.0042 0.986± 0.012
(2.61± 0.26)σ (0.4± 1.4)σ (−3.6± 3.1)σ

BGS pre-recon 5.129± 0.052 0.3824± 0.0081 0.997± 0.016
(4.43± 0.73)σ (4.4± 2.6)σ (−0.8± 4.2)σ

BGS post-recon 5.177± 0.077 0.3810± 0.0079 0.994± 0.016
(5.1± 1.1)σ (3.9± 2.6)σ (−1.4± 4.1)σ

Table 2.12: Summary of full observable-space comparison of RascalC covariances with the sample
covariances (135 bins, s = 20− 200 h−1Mpc, monopole, quadrupole and hexadecapole).

Table 2.12 shows the comparison measures for the full covariance matrices, covering

s = 20− 200 h−1Mpc radial bins for all three multipoles. We can see that some RascalC

results deviate significantly from the “perfect” (i.e., the true covariance behavior). We remind

that the KL divergence and Rinv accumulate deviations in all “directions”. The KL divergences

exceed the ideal expectation value by nearly 3σ for LRG and ELG post-recon, whereas for

BGS they are even further from perfect. Rinv values are high with a larger scatter for BGS. In

the reduced chi-squared, which captures the overall “scaling” with higher accuracy, the mean

values for the RascalC runs are shifted significantly for LRG and ELG post-recon, and the

mock-to-mock scatter is high in all the cases.

We continue the comparisons in Table 2.13, now cutting the range to s = 28− 152 h−1Mpc

as is common for full-shape fits (ShapeFit and direct). The KL divergences and Rinv become

more consistent with the perfect reference cases for LRG and ELG, but remain high for BGS.

The scaling difference (in reduced chi-squared) remains similar.

We perform the final set of observable-space comparisons in Table 2.14, further restricting

the range to s = 48 − 152 h−1Mpc and using only monopole and quadrupole, without

hexadecapole. We do not see significant consistency changes from the previous case.

We note that the abovementioned differences are relatively small. In the reduced chi-
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DKL(C
−1
R ,CS) Rinv(C

−1
R ,CS) χ2

red(C
−1
R ,CS)

Perfect 2.260± 0.049 0.3067± 0.0036 1.0000± 0.0046

LRG pre-recon 2.307± 0.022 0.3056± 0.0037 0.983± 0.016
(0.99± 0.46)σ (−0.3± 1.0)σ (−3.7± 3.4)σ

LRG post-recon 2.333± 0.027 0.2998± 0.0024 0.960± 0.014
(1.52± 0.56)σ (−1.93± 0.68)σ (−8.7± 3.0)σ

ELG pre-recon 2.2578± 0.0095 0.3050± 0.0044 0.995± 0.014
(−0.04± 0.20)σ (−0.5± 1.2)σ (−1.0± 3.1)σ

ELG post-recon 2.292± 0.013 0.3044± 0.0033 0.987± 0.012
(0.67± 0.28)σ (−0.65± 0.93)σ (−2.8± 2.6)σ

BGS pre-recon 2.414± 0.025 0.3140± 0.0066 0.987± 0.016
(3.18± 0.52)σ (2.0± 1.9)σ (−2.7± 3.4)σ

BGS post-recon 2.479± 0.038 0.3202± 0.0065 0.993± 0.016
(4.52± 0.78)σ (3.8± 1.8)σ (−1.5± 3.4)σ

Table 2.13: Summary of observable-space comparison of RascalC covariances with the sample
covariances restricted to the range of ShapeFit and full modeling fit (93 bins, s = 28− 152 h−1Mpc,
monopole, quadrupole and hexadecapole).

squared, they are at most (4.3± 1.4)% for LRG post-recon in the widest range, and in Rinv

– no more than a percent or two on top of 23 − 37% caused by the finite sample size. We

should ask whether we trust the realism of the mocks to such a high level in all aspects of

the correlation function multipoles. Moreover, for the real survey, matching the clustering

between data and simulations will become an additional issue for mocks. On the other hand,

our RascalC computations use the correlation function measured directly from single mock

catalogs similar to real data. Thus, we conclude that the semi-analytic method’s performance

is very compelling.

Model parameters

We proceed to project the covariance matrices (as described in Section 2.3.3) to the parameters

of the models listed in Section 2.5.1.

We use the same model Jacobian (Equation (2.40)) for projecting RascalC covariances

(Equation (2.39)) and the mock sample covariances (Equation (2.41)) into the parameter space.

We compute the partial derivatives at the best fit of each model to the mean clustering of

all the available mocks for each galaxy type. Since BAO reconstruction changes clustering,
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DKL(C
−1
R ,CS) Rinv(C

−1
R ,CS) χ2

red(C
−1
R ,CS)

Perfect 0.702± 0.027 0.2303± 0.0046 1.0000± 0.0062

LRG pre-recon 0.763± 0.014 0.2351± 0.0023 0.982± 0.016
(2.29± 0.54)σ (1.04± 0.49)σ (−2.9± 2.6)σ

LRG post-recon 0.732± 0.013 0.2281± 0.0019 0.964± 0.015
(1.14± 0.50)σ (−0.48± 0.40)σ (−5.7± 2.3)σ

ELG pre-recon 0.7195± 0.0083 0.2317± 0.0039 0.999± 0.015
(0.65± 0.31)σ (0.30± 0.86)σ (−0.2± 2.4)σ

ELG post-recon 0.6903± 0.0088 0.2278± 0.0029 0.995± 0.012
(−0.45± 0.33)σ (−0.54± 0.62)σ (−0.8± 1.9)σ

BGS pre-recon 0.796± 0.021 0.2419± 0.0079 0.982± 0.018
(3.54± 0.78)σ (2.5± 1.7)σ (−2.8± 2.8)σ

BGS post-recon 0.777± 0.031 0.2462± 0.0090 1.011± 0.017
(2.8± 1.2)σ (3.4± 1.9)σ (1.8± 2.7)σ

Table 2.14: Summary of observable-space comparison of RascalC covariances with the sample
covariances restricted to the range of BAO fits (52 bins, s = 48 − 152 h−1Mpc, monopole and
quadrupole).

we compute separate Jacobians before and after reconstruction. We use the mock sample

covariance matrix in this fit. Using different Jacobian matrices for each covariance matrix

would complicate the comparison.

A more thorough investigation of the covariance matrix’s impact on the model fits is

presented in the companion paper (Forero-Sánchez et al., 2024). They perform fits to each

mock clustering using different covariance matrices (mock sample and semi-analytical) and

compare the resulting best parameter values as well as errorbar estimates. On the flip side,

with such a detailed approach Forero-Sánchez et al. (2024) can not test multiple RascalC

single-mock covariances.

BAO

In Table 2.15 we compare the covariances projected to the BAO parameters, the scaling

parameters αiso and αAP
35. The comparison measures look consistent with the perfect reference

case. The most significant deviations are seen in BGS pre-recon: both the KL divergence and

35Because we use Fisher matrix formalism, the covariance matrices projected for α∥ and α⊥ should have
the same comparison measures.
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DKL(C
−1
R ,CS) Rinv(C

−1
R ,CS) χ2

red(C
−1
R ,CS)

Perfect 0.0015± 0.0012 0.051± 0.021 1.000± 0.032

LRG pre-recon 0.00103± 0.00066 0.042± 0.014 0.960± 0.014
(−0.39± 0.53)σ (−0.39± 0.67)σ (−1.27± 0.45)σ

LRG post-recon 0.00110± 0.00026 0.0458± 0.0051 0.9734± 0.0098
(−0.32± 0.21)σ (−0.23± 0.24)σ (−0.84± 0.31)σ

ELG pre-recon 0.00069± 0.00036 0.0367± 0.0093 1.033± 0.010
(−0.66± 0.29)σ (−0.65± 0.44)σ (1.04± 0.32)σ

ELG post-recon 0.00078± 0.00045 0.037± 0.012 0.967± 0.012
(−0.59± 0.37)σ (−0.63± 0.55)σ (−1.05± 0.38)σ

BGS pre-recon 0.0042± 0.0016 0.088± 0.015 0.915± 0.014
(2.2± 1.3)σ (1.74± 0.71)σ (−2.68± 0.46)σ

BGS post-recon 0.00027± 0.00024 0.0213± 0.0093 0.992± 0.013
(−1.00± 0.19)σ (−1.38± 0.44)σ (−0.24± 0.40)σ

Table 2.15: Summary of parameter-space comparison of RascalC covariances with the sample
covariances projected to the BAO fit parameters, αiso and αAP.

Rinv are high, while the reduced chi-squared is almost 3 sigma low on average (meaning that

the RascalC covariance is “larger” than the mock sample one). The mock-to-mock scatter in

RascalC results is always lower than the noise expected from the finite mock sample size.

We have also plotted the errorbars on αiso and αAP against each other in Figure 2.4.

They corroborate Table 2.15. Almost all deviations are within the 99.7% contour. The only

exceptions are two BGS pre-recon realizations. However, we note that these plots do not show

the covariance of the parameters, which is taken into account with KL divergence and Rinv.

Full shape: ShapeFit and full modeling

Table 2.16 shows the comparison measures for the covariances projected to the ShapeFit

parameters: αiso, αAP, dm and df . We do not see significant statistical deviations from the

perfect case. This is the only case when BGS (both pre- and post-recon) are not particularly

far from the reference. The mock-to-mock scatter in RascalC results is smaller than or

comparable with the noise in the sample covariances.

Additionally, in Figure 2.5 we compare the projected errorbars for the scaling parameters,

αiso and αAP. All the points fall within the 99.7% confidence region in this 2D space, although

the other parameters and cross-correlations are ignored in this picture, unlike in Table 2.16.
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Figure 2.4: Comparison of the projected errorbars for the BAO scale parameters, normalized to the
values obtained from the mock sample covariance. The cross shows one-dimensional relative precisions
((2(nS − 1))

−1/2 ≈ 2.2%, Equation (2.50)) following from the EZmocks sample size (nS = 1000), and
the dashed ellipses approximately correspond to two-dimensional 68%, 95% and 99.7% confidence
regions in this 2D space of errorbars. Here, the correlation of errorbars is ignored; it varies in different
cases but is too small to notice (≲ 0.04).

Finally, in Table 2.17 we provide the comparison results for the covariances projected to

the full modeling parameters, h, ωcdm, ωb and logAs. We see deviations exceeding 3 sigma in

most of the measures for LRG pre-recon and BGS; LRG post-recon and ELG look consistent.

Still, the differences we see are at a few percent level, and may be caused by the limited realism

of the mocks.
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DKL(C
−1
R ,CS) Rinv(C

−1
R ,CS) χ2

red(C
−1
R ,CS)

Perfect 0.0050± 0.0023 0.069± 0.016 1.000± 0.022

LRG pre-recon 0.0059± 0.0023 0.073± 0.013 0.969± 0.020
(0.4± 1.0)σ (0.25± 0.81)σ (−1.39± 0.89)σ

LRG post-recon 0.00739± 0.00087 0.0840± 0.0052 0.984± 0.022
(1.06± 0.39)σ (0.95± 0.33)σ (−0.73± 0.98)σ

ELG pre-recon 0.0063± 0.0029 0.078± 0.015 1.005± 0.027
(0.6± 1.3)σ (0.59± 0.94)σ (0.2± 1.2)σ

ELG post-recon 0.0029± 0.0013 0.052± 0.011 0.999± 0.017
(−0.95± 0.58)σ (−1.06± 0.68)σ (−0.06± 0.78)σ

BGS pre-recon 0.0071± 0.0030 0.083± 0.019 0.996± 0.031
(0.9± 1.3)σ (0.9± 1.2)σ (−0.2± 1.4)σ

BGS post-recon 0.0067± 0.0027 0.080± 0.017 0.992± 0.030
(0.7± 1.2)σ (0.7± 1.1)σ (−0.3± 1.3)σ

Table 2.16: Summary of parameter-space comparison of RascalC covariances with the sample
covariances projected to the ShapeFit parameters: αiso, αAP, dm and df .

2.6 Conclusions

We present and validate the DESI DR1 pipeline for the semi-analytical covariance matrices of

the galaxy 2-point correlation functions on realistic mock catalogs, including a model of fiber

assignment.

We develop a streamlined procedure for the estimation of the semi-analytical covariance

matrices for Legendre moments of the 2PCF in separation bins with the RascalC code

(Philcox et al., 2020). The previous implementation (Philcox & Eisenstein, 2019) required an

additional computation with angular bins to mimic the non-Gaussian effects by calibrating the

shot-noise rescaling value on the jackknife covariance matrix estimate. Now we can perform

this calibration together with the construction of the covariance model for Legendre moments.

This allowed for more efficient massive production of covariance matrices for all the tracers,

redshift bins, and galactic caps of DESI DR1 galaxies and quasars data.

Importantly, we reconsidered the methods for covariance matrix comparison, paying great

attention to their meaning, interpretation, and noise stemming from mock sample variance.

We have also discussed the implications of split random-random counts computation and made

a slight modification to the formalism to cover the reconstructed 2PCF estimates.
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Figure 2.5: Same as Figure 2.4 but with errorbars for the scale parameters following from ShapeFit.

We have applied the selected approaches to the validation of RascalC on single DESI-

M2 Firstgen EZ mock catalogs (using their individual clustering measurements and shifted

random catalogs after reconstruction), each representing a reasonable proxy for DESI-M2

data, by comparison with full mock sample covariance. We find a close agreement (maximum

deviation ≈ 2.2σ) with a perfect case, although much of this deviation is due to scatter in

RascalC results. The preceding discussion about the interpretations of the metrics, focusing

on a smaller number of observables and even fewer parameters, allowed us to obtain a clearer

quantitative assessment of the precision and accuracy of RascalC results than in previous

works. One should keep in mind that the mocks are approximate, and this can partially

account for the imperfection of the match with the reference statistics.

Focusing on the errorbar of the BAO scale, we found a very close, percent-level agreement
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DKL(C
−1
R ,CS) Rinv(C

−1
R ,CS) χ2

red(C
−1
R ,CS)

Perfect 0.0050± 0.0023 0.069± 0.016 1.000± 0.022

LRG pre-recon 0.0099± 0.0034 0.093± 0.014 0.951± 0.020
(2.2± 1.5)σ (1.50± 0.89)σ (−2.20± 0.91)σ

LRG post-recon 0.00360± 0.00068 0.0584± 0.0055 0.976± 0.016
(−0.63± 0.30)σ (−0.66± 0.35)σ (−1.08± 0.71)σ

ELG pre-recon 0.0061± 0.0013 0.0783± 0.0094 1.013± 0.024
(0.48± 0.60)σ (0.59± 0.59)σ (0.6± 1.1)σ

ELG post-recon 0.0033± 0.0014 0.055± 0.011 0.985± 0.016
(−0.75± 0.60)σ (−0.85± 0.72)σ (−0.68± 0.72)σ

BGS pre-recon 0.0101± 0.0073 0.099± 0.040 1.013± 0.035
(2.3± 3.2)σ (1.9± 2.5)σ (0.6± 1.5)σ

BGS post-recon 0.0083± 0.0045 0.090± 0.027 1.003± 0.035
(1.5± 2.0)σ (1.3± 1.7)σ (0.1± 1.5)σ

Table 2.17: Summary of parameter-space comparison of RascalC covariances with the sample
covariances projected to the full modeling parameters: h, ωcdm, ωb and logAs.

with the sample covariance from mocks. It is on par with the accuracy that a set of ≈ 1000

simulations can provide. The number of available mocks thus limits the precision of the

validation at the current level.

In the full measurement space before reconstruction, using the shot-noise rescaling is

particularly clearly beneficial compared to the pure Gaussian estimate, even with less noisy

(mock sample average) input clustering. The discrepancies and fluctuations are likely to be

impacted by the precision of correlation function estimates from data, which will improve with

its size in the future. Further validations with larger mocks, corresponding to a year and/or

full five years of DESI data, will follow.

Then, we apply the updated pipeline to more advanced mock catalogs with fast (approxi-

mate) fiber assignment, representative of DESI DR1. We cover 3 selected tracers and redshift

bins (LRG3, ELG2 and BGS according to DESI Collaboration et al. (2025f)), without and with

standard BAO reconstruction applied. We use a single mock catalog and repeat the procedure

for 10 different realizations to assess the impact of realistic fluctuations in the input quantities.

First, we note the difference between the shot-noise rescaling values obtained for the mocks

with fast fiber assignment and the data in Section 2.5.3. We show that the fiber assignment

modeling (and the associated weighting scheme) is the main factor causing the difference.
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Then we find the parameter calibration on jackknife and mock sample covariance yields very

close results in the mock runs. This motivates us to proceed with the comparison of the

covariance matrices.

Then, we apply the set of compact measures of covariance matrix similarity from Sec-

tion 2.3.1. We use covariances in the observable space (correlation function multipoles) in

Section 2.5.4, as well as projected linearly (through Fisher matrix formalism) to the parameters

of different models in Section 2.5.4. We find some deviations that cannot be explained solely

by the finite sample size limiting the accuracy of the mock-based covariance. However, these

differences are at a few percent level.

We argue that this level of agreement is sufficient for real-world applications. First, mocks

necessarily involve approximations to make sufficiently many catalogs. Second, simulations are

never perfectly representative of data in terms of clustering due to the limited precision of the

measurements. Blinding can aggravate this issue by forcing the mock tuning to rely on earlier,

smaller samples with larger uncertainties in their clustering. Additionally, some simulations,

including EZmocks (DESI Collaboration et al., 2025f; Zhao et al., 2025), are only matched to

the 1- and 2-point statistics of the data, whereas the covariance matrices are impacted by 3-

and 4-point functions. Therefore, matching the mocks perfectly is not necessarily a reasonable

goal.

Our results for the BAO model (Section 2.5.4) are particularly important because RascalC

covariance matrices are used in the DESI DR1 baryon acoustic oscillations analysis (DESI

Collaboration et al., 2025f). The errorbars of the scale parameters (αiso and αAP) predicted

from RascalC agree to ≤ 8% with the mock sample covariance. The standard deviation

expected from the sample covariance of 1000 mocks itself is ≈ 2.4%. When we exclude BGS

before reconstruction (not used for the main DESI DR1 BAO), the errorbars agree within ≈ 5%.

Therefore, we report a close match between the semi-analytic and mock sample covariance.

We find the covariance matrices for the BGS sample less consistent in most comparisons36.

We expected them to be more challenging for RascalC because of a higher number density and

36A notable exception is ShapeFit parameters in Section 2.5.4.
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thus higher significance of the 4-point term compared to the 3- and 2-point terms. This already

caused slower convergence and could further demonstrate the limitations of the shot-noise

rescaling. However, BGS has been challenging for the EZmocks as well (Zhao et al., 2025)37,

so their sample covariance is likely to be a less robust reference than for LRG and ELG.

The observable-space results (Section 2.5.4) may leave an impression that RascalC

performance worsened with fiber assignment38. However, we think the change of interpretation

primarily causes this. The previous RascalC validation for early DESI data (Section 2.4) used

an earlier version of EZmocks without any fiber assignment effects. The covariance matrices

there also showed statistically significant variations from the sample covariance in observable

space. They were deemed acceptable as comparable to the scatter in semi-analytical results.

In this work, we use a stricter interpretation, testing whether every RascalC single-mock

result is consistent with the perfect-case reference. In future work, we could repeat the tests

on the mocks before fiber assignment with all the tracers (and multipoles) used in this paper.

One perspective improvement is the development of alternatives to shot-noise rescaling

within the more generic semi-analytic configuration-space formalism. The usage of fully

empirical higher-point functions is likely to be not viable, due to a significantly higher number

of bins and accordingly lower signal-to-noise. Precise theoretical modeling of non-Gaussian

correlation functions is also very challenging. Instead, we might include a basic prescription

for non-Gaussian covariance contribution inferred from a set of detailed simulations, or use

approximate expressions for higher-point functions like ζ(r1, r2) = Q
[
ξ(r1)ξ(r2)+ ξ(r1)ξ(|r1−

r2|) + ξ(r2)ξ(|r1 − r2|)
]

motivated by hierarchical models (Peebles & Groth, 1975), and

possibly a similar structure for the 4PCF. This might provide better accuracy than rescaling

the Gaussian terms while keeping the number of parameters low and thus still allowing us to

fit them to a reference (e.g., jackknife) covariance. On the other hand, the aforementioned

3PCF prescription is known to be far from exact with constant Q (Takada & Jain, 2003),

and the computations may suffer from slower convergence due to additional large values of

37Moreover, DESI BGS EZmocks had not been used in Moon et al. (2023).

38Or due to including not only monopole, but also quadrupole and hexadecapole.
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small-scale 2PCF compared to Gaussian parts.

Another direction for further improvement is to study the dependence of shot-noise rescaling

on fiber assignment incompleteness. This could be achieved by running RascalC on survey

sub-regions with different completeness patterns, set by the number of passes. It is also

possible that a prescription for higher-point non-Gaussian correlations with a low number of

parameters would give a better consistency with the reference than rescaling the covariance

matrix terms, in which they are nulled. However, for such precision studies, it is instructive to

have extremely reliable, realistic and numerous mocks.

The semi-analytic approach can extend beyond the standard 2-point function. First, the

cross-covariances of different tracers are provided in Section A.1. The full cross-covariance has

more bins and requires more mocks than a single covariance for validation at similar precision.

Consistent simulated catalogs for different tracers are also crucial for capturing realistic cross-

correlations. Second, Philcox & Eisenstein (2020a) have introduced the covariance matrices

for the modified power spectra, including the cross-covariance with correlation functions.

Third, Philcox & Eisenstein (2019) have derived the covariance matrices for isotropic 3-

point correlation functions. It involves higher-order correlation functions up to 6 points.

Approximating all of them in fast mocks is challenging. Thus, these extensions require extra

work, particularly on the mock side for validation.

In summary, we have confirmed RascalC semi-analytical covariance matrices for 2PCF

as a very viable alternative to the mock-based ones. Despite the increase in the runtime

of the RascalC code (from 100-300 core-hours in Section 2.4 to 500-1500 core-hours in

Section 2.5.339), the method is far faster than calibrating, generating, and processing a suite

of mocks numerous enough to give an adequate covariance matrix precision. We have shown

that the two methods produce similar results given the requirements of the DESI 2024 BAO

analysis. The speed advantage of the semi-analytic method permits easier exploration of

situations where one cannot afford to regenerate mock catalogs, such as different assumptions

39As we remarked before, the later profiling results suggests that our covariance matrices could potentially
be generated using ≈ 2 times less computational resources.
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about cosmology, galaxy-halo connection, or non-standard sample selections. We therefore

expect that such semi-analytic methods can be of broad utility for computing large-scale

covariance matrices in wide-field surveys.
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Chapter 3

Key DESI BAO results

3.1 Introduction

In this chapter, we provide a summary of major Dark Energy Spectroscopic Instrument

results that have relied on the semi-analytical covariance matrices (Chapter 2) and many

more supporting studies. This review will be far from complete and comprehensive, and is

influenced by our personal preferences. E.g., we omitted the neutrino mass problem (see e.g.

Elbers et al., 2025) because its fair discussion would include much more than BAO. For the

fuller picture, we encourage reading the referenced DESI papers.

Baryon acoustic oscillation (BAO) measurements constrain the expansion of the Universe

between now and the emergence of the CMB. Thus, BAO are very important for understanding

the Hubble tension between local measurements and CMB inference. The expansion history

in late times is also the most informative about dark energy evolution because the fraction of

dark energy in the total energy budget of the Universe is expected to become low in the far

past.

DESI is the most advanced BAO experiment in scientific operation since 2021. It was

designed to measure galaxy redshifts at an unprecedented speed. During its 5-year program,

DESI is scheduled to collect more than 30 million galaxy and quasar spectra, an order of

magnitude more than the previous state-of-the-art, SDSS.
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3.2 Early DESI data (2023)

The first DESI BAO detection (Moon et al., 2023) from the Early DESI data1 was a crucial part

of the validation of DESI’s scientific program (DESI Collaboration et al., 2024d). It confirmed

data quality and basic processing choices, abstaining from any cosmological implications. We

found that only the first 2 months of the DESI main survey data already give measurement

precision and detection level (shown in Figure 3.1) comparable to SDSS-III (DR12) data

collected over 6 years (Ross et al., 2017). This confirmed that DESI was on track to reach the

planned BAO precision at the end of its full 5-year program.

As we mentioned in Chapter 2, our specific contribution has been covariance matrices for

the correlation function measurements, crucial for the resulting precision estimates. For early

DESI data, we identified a mismatch in the clustering signal between the simulations and the

data, which biased the mock-based covariance. Using more flexible semi-analytic covariances

allowed us to fix this discrepancy at a low cost.

3.3 DESI DR1 (2024)

3.3.1 BAO measurements

To ensure solid cosmological interpretation, the DESI DR1 (2024) galaxy and quasar BAO

analysis (DESI Collaboration et al., 2025f) involved a thorough re-evaluation of methodology

and known systematics. There largely correspond to a suite of supporting papers on: theoretical

modeling (Chen et al., 2024b), optimal reconstruction (Paillas et al., 2025; Chen et al., 2024a),

optimal combination of overlapping tracers (Valcin et al., 2025), analytical (Alves et al., 2025)

and semi-analytical (Chapter 2, Rashkovetskyi et al., 2025b) covariance matrix validation

(Forero-Sánchez et al., 2024), fiducial cosmology (Pérez-Fernández et al., 2025) and galaxy-halo

connection (Mena-Fernández et al., 2025; Garcia-Quintero et al., 2025) assumptions.

1The name and some descriptions may suggest that Early DESI data is included in DESI Early Data
Release (DESI Collaboration et al., 2024e), but this is not true. The survey validation data comprising the
Early Data Release is insufficient for a robust BAO analysis. Instead, the early DESI data represents the first
two months of the main survey and is only part of Data Release 1 (DESI Collaboration et al., 2025c).
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Figure 3.1: BAO in the Early DESI data (from the first two months of the main DESI survey,
DESI-M2; figure reproduced from Moon et al., 2023). Left: measurements and best-fit models before
and after standard BAO reconstruction (pre- and post-recon). Right: chi-squared differences relative
to the best BAO fit in each case. In the DESI-M2 LRG sample (0.4 < z < 1.1), the precision of the
(isotropic) scale parameter is 1.7% and the detection is ≈ 5σ; in the BGS sample (0.1 < z < 0.5) —
2.6% and ≈ 3σ respectively. Compare LRG to BOSS CMASS (0.43 < z < 0.7) precision of 1.6% (DR9,
Anderson et al., 2012), 1.0% (DR12, Ross et al., 2017) and the 0.77% aggregate precision for LRG from
both BOSS and eBOSS (Alam et al., 2021); and BGS — to BOSS LOWZ (0.15 < z < 0.43) precision
of 1.7% (DR12, Ross et al., 2017). The scale parameter α was shifted by a small value in the spirit of
blinding and to discourage premature cosmological inference before the full one-year analysis.
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Many of these supporting studies, as well as the clustering catalog iterations (DESI

Collaboration et al., 2024a) and the validation of the blinding technique (Andrade et al.,

2025b) intended to prevent confirmation bias, benefited heavily from our fast, flexible and

realistic semi-analytic covariance matrices. If mock-based covariance matrices were the only

option, fully consistent tests of quick corrections, alternative assumptions or differently selected

galaxy samples would cost much more time and effort and thus would likely remain unavailable.
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Figure 3.2: Detection significance of the BAO features in various DESI DR1 galaxy tracers (figure
reproduced from DESI Collaboration et al., 2025f). Compare with Early DESI Data (Figure 3.1).

We briefly show the impressive detection significances with ∆χ2 profiles for DESI DR1

galaxy and quasar BAO in Figure 3.2 before shifting attention to the corresponding distance

measurements in Figure 3.3. The latter also include the Lyman-α forest BAO results from DESI

Collaboration et al. (2025d). Their aggregated precision surpassed the previous state-of-the-art

by a factor of 1.22. At this accuracy level, hints of deviations from the standard model of

cosmology emerged.

3.3.2 Cosmology: dynamic dark energy

DESI Collaboration et al. (2025e) presented implications of DESI DR1 BAO measurements

2Although some individual bins (particularly LRG 0.6 < z < 0.8, LRG2) have a lower precision than optimal
BOSS and eBOSS combination (DESI Collaboration et al., 2025f; Alam et al., 2021).
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Figure 3.3: Summary of DESI DR1 BAO measurements (figure by Arnaud de Mattia based on DESI
Collaboration et al., 2025f,d,e). All of the errorbars on this plot, except for Ly-α, are derived from
the RascalC semi-analytic covariance matrices (Chapter 2). Improved precision allows us to see
deviations from the standard model (ΛCDM, solid line). An alternative dark energy model (w0waCDM,
dashed line) is preferred.
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for selected cosmological models. We choose to highlight the emerging possibility of variable

dark energy (Figure 3.4), in a way similar to recent supernova analyses (Brout et al., 2022;

Rubin et al., 2023; DES Collaboration et al., 2024). This could become the first confirmed

extension to the standard cosmological model, ΛCDM.
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Figure 3.4: w0waCDM model implications of DESI DR1 data in combination with external datasets
(figures reproduced from DESI Collaboration et al., 2025e). External datasets are CMB (a combination
of Planck PR3 primary temperature and polarization anisotropy power spectra (Planck Collaboration
et al., 2020b) and lensing power spectra from Planck PR4 (Carron et al., 2022) and ACT DR6 (Qu
et al., 2024)) and Type Ia supernovae: PantheonPlus (Brout et al., 2022), Union3 (Rubin et al.,
2023) and DES Y5 (DES Collaboration et al., 2024). DESI DR1 BAO with CMB and different Type
Ia supernovae datasets indicate a 2.5σ, 3.5σ or 3.9σ deviation from Λ, the constant dark energy
(w0 = −1, wa = 0), whereas removing any of them reduces the significance to ⪅ 2σ.

This analysis assumes the Chevallier-Polarski-Linder (CPL) parameterization of the dark

energy equation of state (Chevallier & Polarski, 2001; Linder, 2003):

wDE(a) = w0 + wa · (1− a). (3.1)

The equation of state parameter w drives the density evolution3 via ρ ∝ a−3(1+w) =

(1 + z)3(1+w), a is the scale factor of the Universe and z is cosmological redshift. This

parametrization is phenomenological, but it can closely reproduce a wide variety of physically

3Alternatively, w is the ratio of pressure to energy density in a linear equation of state. Assuming no
interactions with other components of the Universe, this sets the energy density evolution. But with interactions,
the two definitions can differ, then the logarithmic derivative of the density can be called the effective equation
of state parameter.
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motivated models (Linder, 2003; De Putter & Linder, 2008). The constant dark energy (or

cosmological constant Λ) have wDE = −1 and thus w0 = −1, wa = 0.

Interestingly, DESI DR1 BAO alone and with external datasets (Figure 3.4) align with

a line in w0, wa space going through zero with a negative inclination. Lodha et al. (2025b)

found that it does not correspond to well-known models motivated in fundamental physics, but

closely aligns with the “mirage” dark energy predicted by Linder (2007) based on cosmological

measurements. Moreover, it implies phantom dark energy (wDE < −1) in earlier cosmic times,

which is deemed challenging to model (e.g., in Cortês & Liddle, 2024) or even unphysical

(e.g., in Dinda & Maartens, 2025) due to its violating the null energy condition, ρ+ p ≥ 0.

Notably, interactions of dark energy with other components of the Universe (e.g., dark matter

in Giarè et al., 2024) may lead to an increase in dark energy density (“effective” wDE < −1)

while ρ+ p ≥ 0 holds. However, the exact description and fundamental motivation of such

interactions may be challenging. Therefore, the nature of dynamic dark energy seems to

remain mysterious.

We do not go into much more detail about DESI DR1 results here because the updated

DR2 BAO results are now also available.

3.4 DESI DR2 (2025)

3.4.1 BAO measurements

We have been closely involved in the galaxy and quasar BAO analysis of the DESI Data Release

2 (DR2, DESI Collaboration et al., 2026), comprised of approximately 3 years of the main

survey. This latest BAO analysis (DESI Collaboration et al., 2025a; Andrade et al., 2025a)

has been largely similar to the DR1 analysis (DESI Collaboration et al., 2025f), reusing the

results of its many supporting studies. However, one of the important differences is that the

previously performed tests of semi-analytical and analytical covariances (crucially, RascalC

in Chapter 2) allowed us to save considerable time and effort by not waiting for the preparation

and calibration of approximate mock suites with a large number of realizations.
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Figure 3.5: Summary of DESI DR2 BAO measurements (figure by Arnaud de Mattia based on DESI
Collaboration et al., 2025a,b,f,d); DESI DR1 distance measurements are shown as semi-transparent
for comparison. All of the errorbars on this plot, except Ly-α, are also derived from the RascalC
semi-analytic covariance matrices (Chapter 2). An alternative dark energy model (w0waCDM, dashed
line) is still preferred to the standard model (ΛCDM, solid line) with Planck parameters (Planck
Collaboration et al., 2020c).
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We show a summary of the BAO features and distance measurements in Figure 3.5. As

before, Lyman-α forest BAO results DESI Collaboration et al. (2025b) are also included. The

precision of all measurements improved, and anisotropic measurement became possible for the

second Emission Line Galaxies (ELG) bin4. The precision in all DESI BAO bins now surpasses

the BOSS and eBOSS combination (DESI Collaboration et al., 2025a; Alam et al., 2021). The

deviations from the standard model did not disappear in the updated measurements, although

several bins shifted closer to it.

3.4.2 Cosmological implications

Figure 3.6 presents the DR2 dynamic dark energy (w0waCDM) picture. The constraints based

on DESI BAO with both CMB and supernovae improved slightly but shifted closer to the

constant dark energy by a similar amount. The increased precision increased the detection

without the Type Ia SNe, with DESI BAO and CMB only, although it is still far from the

rigorous threshold of 5σ. Lodha et al. (2025a) conducted an extended analysis of alternative

dynamic dark energy parametrizations and non-parametric inference methods, to which we

refer an interested reader.

Figure 3.7 shows an emerging tension identified between DESI BAO and CMB in ΛCDM.

The discrepancy in the matter fraction Ωm and the Hubble constant H0 and sound horizon

rd product existed in DR1 at a 1.9σ level. In DR2, constraints became tighter and did not

shift, increasing the tension to 2.3σ. After calibrating the sound horizon with the Big Bang

Nucleosynthesis (BBN, Schöneberg, 2024) alone or together with the angular sound horizon

scale θ∗ from the CMB, we infer a higher value of H0 from DESI DR2 than from the CMB.

Then it is interesting to compare the Hubble constant inferred from DESI BAO with the

direct measurement by SH0ES (which is also famously higher than inferred from the CMB,

Riess et al., 2022). Figure 3.8 shows that DESI DR2 BAO+BBN H0 is in a 4.5σ tension

with SH0ES. Unfortunately, dynamic dark energy (w0waCDM) does not help to alleviate

the Hubble tension, because the inferred Hubble constant value shifts further down (DESI

4The first ELG bin is combined with LRG in the main analysis and accordingly this diagram.
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Figure 3.7: Emerging tension identified in ΛCDM between DESI DR2 BAO and CMB (figures
reproduced from DESI Collaboration et al., 2025a). The left panel shows uncalibrated BAO, from
which we can only infer the product of the Hubble constant and the sound horizon H0rd. The DESI
DR2 BAO contour is consistent with DR1, but gives tighter constraints thanks to higher measurement
precision, which increases the significance of the discrepancy with CMB from 1.9σ to 2.3σ. The
right panel shows the results of sound horizon calibration using the Big Bang Nucleosynthesis (BBN,
Schöneberg, 2024) alone or together with the angular sound horizon scale θ∗ from the CMB. The
dotted line shows the degeneracy direction of the CMB.

Collaboration et al., 2025a).

The inference of the Hubble constant from both BAO and CMB crucially depends on sound

horizon calibration, which in turn makes certain assumptions about cosmic recombination.

The physics of recombination has been studied for a long time, and it may be hard to envision

a significant deviation from the standard picture. But Jedamzik & Abel (2011, 2013) suggested

that primordial magnetic field (motivated in their own right to e.g. seed the galactic magnetic

fields) could induce small-scale inhomogeneities in baryons before recombination, which would

alter its pace but would not be directly observable in CMB. This could reduce the sound

horizon size and increase the Hubble constant inferred from CMB (Jedamzik & Pogosian,

2020) and BAO. We became interested in this and similar possibilities at an earlier point,

which resulted in Chapter 4 of this thesis (originally published as Rashkovetskyi et al., 2021),

followed by a summary of more recent developments in Section 4.6.1.
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Chapter 4

Hubble tension and small-scale

clumping at recombination1.

4.1 Introduction

The standard Λ-cold dark matter (ΛCDM) model of cosmology has proven to be remarkably

successful in interpreting different measurements consistently and simultaneously. These

include the cosmic microwave background (CMB, for example Hinshaw et al. (2013); Planck

Collaboration et al. (2020c)), the large-scale structure (LSS, e.g. Eisenstein et al. (2005); Cole

et al. (2005); Alam et al. (2017); DES Collaboration et al. (2021)), and probes of the expansion

rate of the Universe (such as Perlmutter et al. (1999); Riess et al. (1998, 2021)). However, as

the precision of these probes has increased, tensions between them have started to appear.

A notable problem that has emerged within ΛCDM is the Hubble tension—a discrepancy

between the cosmic expansion rate today (given by the Hubble parameter H0) inferred from

different data sets. On the one side, the standard CMB analysis of Planck 2018 data yields a

value of H0 = (67.4± 0.5) km s−1 Mpc−1 (Planck Collaboration et al., 2020c). On the other

side, direct H0 measurements (from type Ia supernovae calibrated with Cepheids (Freedman

et al., 2012; Burns et al., 2018; Dhawan et al., 2018; Riess et al., 2021) or surface brightness

1This chapter was originally published as Rashkovetskyi et al. (2021)
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fluctuations (Khetan et al., 2021); from type II supernovae (De Jaeger et al., 2020), strong-

lensing time delays (Wong et al., 2020; Birrer et al., 2020; Shajib et al., 2020), gravitational

waves standard sirens (Abbott et al., 2017), Tully-Fisher relations (Kourkchi et al., 2020), tip

of the red giant branch (Jang & Lee, 2017), Mira variables (Huang et al., 2020) or megamasers

(Pesce et al., 2020)) give higher values. In this paper, we will focus on the latest distance-ladder

measurement of the Supernovae, H0, for the Equation of State of Dark Energy (SH0ES)

Collaboration H0 = (73.2± 1.3) km/(s Mpc) (Riess et al., 2021), which is 4.2σ away from

Planck.

There is another, weaker tension in the values of the matter fraction Ωm and the amplitude

of galaxy clustering σ8 (on spheres of comoving radius R = 8/h Mpc). Instead of σ8, a

related parameter S8 = σ8 (Ωm/0.3)0.5 is often used, as it is less correlated with Ωm in LSS

data. Planck Collaboration et al. (2020c) report Ωm = 0.315± 0.007 and S8 = 0.831± 0.017

with Planck data, while the Dark Energy Survey Year 1 (DES-Y1, Abbott et al. (2018))

weak-lensing and galaxy-clustering data obtains Ωm = 0.264+0.032
−0.019, S8 = 0.783+0.021

−0.025. The new

DES Year 3 results are Ωm = 0.339+0.032
−0.031, S8 = 0.776± 0.017 (DES Collaboration et al., 2021),

making the tension weaker, but still worth exploring, as other LSS probes disagree with the

CMB (Heymans et al., 2021; Krolewski et al., 2021; García-García et al., 2021; Joudaki et al.,

2017; Hildebrandt et al., 2020; Ivanov et al., 2020).

Various extensions to ΛCDM have been proposed to solve the H0 discrepancy. They can

be broadly divided into early- and late-type solutions, with the former changing the length

of the standard ruler (Poulin et al., 2019; Agrawal et al., 2019; Lin et al., 2019; Sakstein &

Trodden, 2020; Kreisch et al., 2020), and the latter the evolution of the expansion rate H(z)

at low redshifts (Zhao et al., 2017; Wang et al., 2018; Raveri, 2020; Di Valentino et al., 2020).

Only the early-type solutions can be in agreement with low-z standard-ruler measurements of

the BAOs, though the most popular model of early dark energy (Hill et al., 2020) worsens

the S8 tension (for a recent review see Knox & Millea (2020)). Here, instead, we study how

changing the physics of recombination is an early-type solution to both the H0 and S8 tensions,

as first proposed in Jedamzik & Pogosian (2020).
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The interpretation of CMB data crucially relies on the physics of recombination, so it

is natural to ask how well understood, and constrained, this transition is. The process of

hydrogen recombination depends crucially on the two-body recombination rate, and thus

can be affected by physics at very small scales (Jedamzik & Abel, 2011). In Banerjee &

Jedamzik (2004); Jedamzik & Abel (2013); Jedamzik & Saveliev (2019) it was shown that, by

creating baryonic clumping at small scales, primordial magnetic fields (PMFs, for a review see

Subramanian (2016)) would leave an imprint on the CMB by allowing a more-rapid process of

recombination, and shifting the decoupling between photons and baryons to larger z. While

such inhomogeneities would take place at very small scales, they enhance the recombination

rate when averaged over larger scales. An earlier recombination implies a higher H0 for a fixed

angular sound horizon θs in the CMB. Recently, Jedamzik & Pogosian (2020) have shown that

such a clumping could relieve both the Hubble and S8 tensions in current cosmological data.

On the other hand, Thiele et al. (2021) argued that the H0 value inferred from Planck and

Atacama Cosmology Telescope (ACT) data remains in significant tension with SH0ES.

Here we extend previous analyses by introducing a very generic model of clumping at

small scales. This model posits that baryons live in three zones: an average one, and an

over/underdense one (see Figure 4.1). This encompasses the models in Jedamzik & Pogosian

(2020) and Thiele et al. (2021), as well as other possible origins of small-scale baryonic clumps,

such as baryon isocurvature (Dolgov & Silk, 1993).

The key question we tackle is whether a change in recombination that is sufficient to change

the sound horizon—and thus explain the H0 tension—leaves a detectable imprint on the CMB

damping tail. The high-ℓ CMB tail has been measured to great success by the Planck, ACT

(Choi et al., 2020), and South Pole Telescope (SPT, Chown et al. (2018)) collaborations; and

upcoming measurements from the Simons Observatory (SO, Ade et al. (2019)) and CMB-S4

(Carlstrom et al., 2019) will improve those measurements even further.

This paper is structured as follows. We start in Section 4.2 by defining our generalized

clumping model (M3), and discussing its physical implications in Section 4.3. In Section 4.4

we analyze the current CMB data from Planck 2018 (Planck Collaboration et al., 2020b,d),
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exploring clumping-H0 correlations as well as looking into shifts in S8 and Ωm. Then we

perform forecasts for future CMB experiments in Section 4.5, to understand how better

measurements of the damping tail will test our clumping model more precisely. We conclude

in Section 4.6.

4.2 Three-zone model (M3) for recombination

��

�� �+

�+

�0 = 0

���+f0

Figure 4.1: M3 spatial structure: regions with average (0), lower (−) and higher (+) density. We take
those three effective zones to have constant overdensity δi = nH,i/ ⟨nH⟩ − 1 each, and the structure is
fixed in time. The model is described by six parameters: three δi’s and three volume fractions fi that
each zone occupies. There are three constraints:

∑
i fi = 1,

∑
i fiδi = 0 and δ0 = 0. So we choose f0

and δ± as input parameters, as highlighted in upper right corner.
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We begin by defining our three-zone model (M3) for baryonic clumping. The general

idea is that there are fluctuations on very small (∼ kpc for PMFs (Subramanian, 2016))

scales, so that the large-scale behavior of baryons follows the usual assumptions; whereas the

recombination rate, which depends on the electron density squared (n2
e) can be enhanced (for

large overdensities) or reduced (for underdensities), with respect to the average.

Our general picture is illustrated in Figure 4.1: there are regions with average (marked by

the index 0), lower (−) and higher (+) density. For simplicity, we take those three effective

zones to have constant hydrogen density nH each, and the structure is constant in time. Then

one needs six parameters: three weights (volume fractions) fi and three densities, which can

be parametrized as ∆i = nH,i/ ⟨nH⟩ or δi = ∆i − 1 (hereafter i = {0,−,+}). However, we set

three constraints: first, all volume is divided between the three zones (
∑

i fi = 1), second, the

total baryonic mass is set by ωb (
∑

i fi∆i = 1, or equivalently
∑

i fiδi = 0), and finally, one

of the zones has average density (δ0 = 0, which is optional but simplifies the analysis). This

leaves three free parameters. For input, we choose the two nonzero relative overdensities δ−,

δ+ and the volume fraction f0 of the average-density zone.

This three-parameter model is very flexible, as for example it encompasses the M1 and

M2 models presented in Jedamzik & Pogosian (2020) (obtained by fixing f0 = 1/3, and either

δ− = −0.9 for M1 or δ− = −0.7 for M2). However, our M3 model is only bound by the

constraints of volume and mass conservation and the only arbitrary choice is setting one of

the three regions to have average density. On the flip side, this flexibility makes the three

parameters very degenerate: if either f0 → 1, δ+ or δ− → 0, then the deviation from uniform

density becomes negligible.

Therefore, the prior on these parameters ought to be balanced between generality and

degeneracy. We choose a log-uniform prior on |δ−| (10−5 ≤ |δ−| ≤ 0.955) and on the ratio

|δ+/δ−| (0.1 ≤ |δ+/δ−| ≤ 10), and a uniform prior on f0 (0 ≤ f0 ≤ 1). The lower bound on

|δ−| is set to the curvature perturbations
√
As ∼ 10−5, whereas the higher bound is determined

by numerical limitations of the recombination code, more extreme underdensities cause the

integration in RECFAST to fail. Bounds on the ratio are chosen so that the under and
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overdensity regions are within an order of magnitude from each other, to avoid the unnatural

configuration when one δ is negligible and other is significant. Moreover, the constraints force

the volume fractions ratio to be f+/f− = −δ−/δ+, so very different δ’s will cause one of the

volume fractions to be tiny and the whole clumping effect negligible.

An important parameter quantifying the amplitude of the inhomogeneities is the relative

variance of densities,

b =

〈
(nH − ⟨nH⟩)2

〉

⟨nH⟩2
= −δ−δ+ (1− f0) , (4.1)

hereafter denoted as the clumping parameter b, following Jedamzik & Pogosian (2020).

Technically, we implement this model in a fork2 of the CLASS code3 (Blas et al., 2011). We

run the standard recombination code RECFAST (Seager et al., 1999, 2000; Wong et al., 2008)

within each zone separately, given its density nH,i, producing three recombination histories, in

terms of their free electron fractions xe,i (z) = ne,i/nH,i. These are then averaged

xe (z) =
∑

i

fi∆ixe,i (z) (4.2)

and passed to the rest of the modules in CLASS.

We have also tested our method with the more precise recombination code HyREC (Ali-

Haïmoud & Hirata, 2011). While the two codes differ in their predictions of the highest ℓ

modes (see e.g. Lee & Ali-Haïmoud (2020)), we find this difference subleading for the purposes

of this paper, as shown in Section B.1.1.

4.3 The effects of small-scale gas clumping on the CMB

4.3.1 Recombination

Consider the recombination of an effective three-level hydrogen atom,

dne

dt
+ 3Hne = −

(
αnenH+ − βnH0e−E21/kT

)
C, (4.3)

2https://github.com/misharash/class_public

3https://lesgourg.github.io/class_public/class.html
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Figure 4.2: Demonstration of the effect of clumping on the recombination history (xe, black) and
visibility function (g, purple) versus redshift z. Standard recombination is shown as dashed curves, and
clumping in solid, where we have set δ− = −0.9, δ+ = 5/3, and f0 = 1/3, to yield b = 1. Cosmology
(θs, ωb, ωcdm, As, ns, τreio) is fixed to the Planck best fit (Planck Collaboration et al., 2020c).

where α and β are recombination and photoionization rate coefficients, E21 is the energy

difference between the first excited level and the ground state, k is Boltzmann constant, T is

temperature and C is an additional factor taking into account both Lyman-α and two-quantum

decays (Peebles, 1968; Zel’dovich et al., 1969). If we take a spatial average, all terms except

the first on the right-hand side, will depend on ⟨nH⟩, while that one term will depend on
〈
n2
H

〉
, as it corresponds to recombinations (binding of an electron and an ion). Introducing

inhomogeneities enhances the average recombination rate, as
〈
n2
H

〉
≥ ⟨nH⟩2 (where equality

is only reached for uniform density). This causes ne to decrease faster, and the Universe to

become neutral and transparent to radiation earlier than in the homogeneous case. Given a
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recombination history, we define the visibility function

g = τ̇ e−τ

as the probability that a CMB photon last scattered per unit conformal time, and thus

determines the effective redshift of recombination. It is given in terms of the Thomson optical

depth τ and its derivative with respect to conformal time η (namely the inverse of photon’s

comoving mean free path),

τ̇ = σTnH,nowxe (1 + z)2 , (4.4)

where nH,now is hydrogen number density today, which is not time- or redshift-dependent, and

σT is Thomson scattering cross-section.

While Equation (4.3) is a simple approximation—and in our implementation we include

the detailed physics of the recombination codes—it serves to illustrate how small scales affect

recombination at large scales. As an example, Figure 4.2 shows how clumping affects recombi-

nation, where the intuition from Equation (4.3) remains true: clumping shifts recombination

and thus the peak of the visibility function to higher redshifts.

To show how recombination evolves in over/under-dense regions, we plot the ionization

fraction in each of the three zones of our M3 model in Figure 4.3. The underdense (“-”) zone

has a dramatically delayed recombination history, and it presents a sizable low-z tail. The

total M3 ionization fraction approaches the “0” zone (namely standard recombination) for

lower redshifts.

We note that manually enhancing the average recombination rate (i.e., without keeping

track of the overdense and underdense zones) does not capture the entire effect of clumping.

To illustrate that, we have also implemented a simple one-parameter clumping model, using

only b (Equation (4.1)), where we have assumed a spatially uniform xe and have therefore

just multiplied the rates of recombination and other two-body processes by
〈
n2
H

〉
/ ⟨nH⟩2 =

1 + b inside RECFAST. From Figure 4.3 it is clear that this simple model behaves like

an overdense zone and does not reproduce the behavior of M3. Such a difference arises

because the recombination rate is proportional to ⟨nenH+⟩ ≈
〈
x2en

2
H

〉
. Only if one assumes
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Figure 4.3: Ionization fraction in different zones of the M3 and simple-clumping models. The
clumping parameters are δ− = −0.9, δ+ = 5/3, and f0 = 1/3, b = 1. Cosmology (θs, ωb, ωcdm, As,
ns, τreio) is fixed to the Planck best fit (Planck Collaboration et al., 2020c). The “-” zone behaves
very different from the others and has a notable low-redshift tail. The total M3 ionization fraction
approaches the “0” zone (namely standard recombination), while for simple clumping (when rates of
recombination and other two-body processes are just enhanced by a factor of 1 + b) xe stays lower.
The simple-clumping model produces larger deviations in power spectra than M3 for the same H0

change and is only shown here for comparison purposes.

constant xe can one simply put the latter equal to ⟨xe⟩2
〈
n2
H

〉
= ⟨xe⟩2 ⟨nH⟩2 (1 + b). But if

we assume no electron mixing between the zones, at each density the recombination goes

at its own pace. At lower densities the ionization fraction is higher and vice versa. Then
〈
x2en

2
H

〉
< ⟨xe⟩2 ⟨nH⟩2 (1 + b), and the actual ratio is time-dependent. As a consequence, this

simple clumping model causes significantly higher difference in power spectra Cℓ for the same

change in H0 than M3 and thus cannot better alleviate the Hubble tension. This implies that

matching the low-z tail of recombination is key for consistency with CMB data. Therefore
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only M3 and not simple clumping is used further in the paper.

4.3.2 Sound horizon at last scattering

Shifting the epoch of recombination affects the quantities derived from the CMB. For example,

distances are inferred from well-measured CMB angular scales, such as the angular scale of

the sound horizon at last scattering θs = rs/r∗, where

r∗ =

∫ z∗

0

cdz

H (z)
(4.5)

is the comoving distance to the last scattering surface, c is speed of light, and

rS =

∫ ∞

z∗

cS (z) dz

H (z)
(4.6)

is the comoving distance a sound wave (of speed cS) could travel before last scattering, called

sound horizon. The redshift z∗ of last scattering is determined by recombination physics (in

particular by the peak of the visibility function) and depends on the radiation, baryon, and

matter densities,

z∗ = z∗ (ωr, ωb, ωm) ; ωj = Ωjh
2,

where h = H0/[100 km/(s/Mpc)].

The angular sound horizon θs ∼ 1/ℓpeak is measured very well from the CMB power

spectrum, where ℓpeak is the multipole of the first acoustic peak. This leaves two main avenues

to obtain a larger H0 from the CMB and solve the Hubble tension. Late-type solutions change

the H(z) at low redshifts, affecting the distance to last scattering, i.e., r∗ in Equation (4.5).

Early-type solutions, on the other hand, change the sound horizon rs in Equation (4.6). This

can take the form of an increase in H(z), for instance from early dark energy (Poulin et al.,

2019; Sakstein & Trodden, 2020; Agrawal et al., 2019). In our case, however, it is through

altering recombination. Clumping changes the z∗ (ωr, ωb, ωm) function, which lowers rs (at

fixed ωi); so to keep the same observed θs, the comoving distance r∗ must be reduced, yielding

higher H0.
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4.3.3 Silk damping

Another important phenomenon closely related to recombination physics is Silk diffusion

damping (Silk, 1968). Photons perform a random walk with nonzero mean free path, which

smooths their perturbations, making these decay as time passes. A mode with wave number k

is suppressed by a factor D (k), which can be approximated as

D (k) =

∫ η0

0
dη g(η) exp

{
− [k/kD (η)]2

}
, (4.7)

where the effective diffusion scale is

k−2
D (η) =

1

6

∫ η

0
dη′

1

τ̇

R2 + 16 (1 +R) /15

(1 +R)2
, (4.8)

with R = 3ρb/4ργ = (3ωb/4ωγ) (1 + z)−1 (Hu & White, 1997), where ρb and ργ are the physical

energy densities of baryons and photons respectively.

As the visibility function is peaked around recombination (η = η∗) and normalized

(
∫ η0
0 dη g (η) = 1), the damping factor can be approximated by taking out the exponential

at peak out of the integral in Equation (4.7), yielding D (k) ≈ exp
{
− [k/kD (η∗)]

2
}
. This

introduces a new length scale into the problem: rD = 2π/kD, which has different parameter

dependence from rS .

In the simplest case of a constant sound speed, rS scales as cSη∗ = cS
∫∞
z∗

dz/H(z), which

is the distance a sound wave can travel up to recombination, whereas rD scales roughly

as
[∫ η∗

0 dη/(1 + z)2
]1/2

=
[∫∞

z∗
dzH−1(z)(1 + z)−2

]1/2
, as the comoving mean free path τ̇−1

scales intrinsically as (1 + z)−2 (Equation (4.4)). As a consequence, the two scales will react

differently to changes in the recombination history. In particular, the damping scale receives a

larger contribution from lower redshifts, near z∗, so it is more sensitive to the recombination

profile.

Small-scale clumping shifts recombination to earlier times, and with it the peak of g, as

we showed in Figure 4.2 for our M3 model. This will alter the damping scale relative to the

sound horizon.

To build intuition, we have run a sequence of models with increasing clumping but fixed
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Figure 4.4: Effects of clumping with a fixed cosmology (θs, ωb, ωcdm, As, ns, τreio), in all cases
with f0 = 2/3 and |δ+/δ−| = 4/3. Top panel: the sound horizon rS (black) decreases with increasing
clumping b or recombination redshift z∗, whereas the damping scale rD (magenta) has a different
and more complex behavior. Bottom panel: H0 increases (as distance to last scattering r∗ decreases
proportionally to rs, and other cosmological parameters are fixed); the angular damping scale θd =
rD/r∗ first increases and then decreases.

cosmology (in terms of θs, which is exquisitely measured by the CMB), keeping f0 = 2/3

and |δ+/δ−| = 4/3 in our M3 model. The effects are shown in Figure 4.4. The comoving

damping scale changes differently from the sound horizon, as we reasoned before. Similarly to

θs = rS/r∗, we convert it to an angular scale θd = rD/r∗, which first increases with clumping

and then decreases.

CMB fluctuations with higher multipoles ℓ are further Silk suppressed, and thus provide a

better measurement of the damping scale kD. Therefore, good precision in the CMB damping

tail provides a strong test of clumping.
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We illustrate this in Figure 4.5, where we show the relative difference between CMB power

spectra, both temperature (TT ) and polarization (EE) from M3 and from ΛCDM (with

standard recombination), given the same cosmological parameters. In particular, the same

sound horizon angular scale θs ensures that the acoustic oscillations are in phase with one

another, otherwise there would be a large oscillating difference between the power spectra. The

gradual deviation on smaller scales (ℓ ≳ 1500 in temperature and ℓ ≳ 2000 in polarization) is

caused by the damping scale difference. There are also smaller wiggles in the relative difference,

which are caused by the change in duration of last scattering (Hadzhiyska & Spergel, 2019).

However, they are less significant than the smoother trend.

We also show the Planck measurements and forecasted CMB-S4 binned errors (including

both instrumental noise and cosmic variance). Current measurements, from Planck, are

scattered around zero, so that it is not easy to tell by eye how strongly this particular clumping

configuration is disfavored. However, upon evaluating the likelihood we find ∆χ2
Planck = 93,

most of it coming from high-ℓ (ℓ ≥ 30) TT, TE,EE (∆χ2
high ℓ TTTEEE = 91). The difference

is high because in this example we have fixed the rest of the cosmological parameters. As

we will show later (Section 4.4.3, Figure 4.9), by shifting the cosmological parameters, M3 is

able to fit the ℓ ≲ 1000 region very well, though at higher ℓ it diverges due to a difference in

the damping scale. With CMB-S4 errors, however, the difference induced by b ∼ 1 clumping

is clearly many sigmas in several dozens of bins both in temperature (TT ) and polarization

(EE), showing that more precise damping tail measurements will be able to distinguish the

presence of significant clumping. For this same example, we find ∆χ2
CMB−S4 ≈ 1350, much

higher than for Planck.

4.4 Results with Planck 2018

In this section we apply the M3 model to Planck 2018 data with the key goal of assessing how

it alleviates the Hubble tension. We also perform model comparison (ΛCDM with standard

recombination versus M3) and discuss the compatibility with LSS measurements.

Our CMB datasets are low-ℓ TT,EE, binned nuisance-marginalized high-ℓ TT, TE,EE
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Figure 4.5: Demonstration of the effect of clumping on the CMB damping tail. We define the ΛCDM
prediction with standard recombination as the reference Cℓ,ref , and compare our clumping model
against it. The black dashed line shows a clumping case, with M3 parameters δ− = −0.9, δ+ = 5/3,
and f0 = 1/3 (giving b = 1). The cosmological parameters (θs, ωb, ωcdm, As, ns, τreio) are fixed to the
Planck best fit. Cyan points represent the binned Planck data, whereas red correspond to CMB-S4
forecasted error bars, both binned with ∆ℓ = 100.
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(Planck Collaboration et al., 2020b) and lensing (Planck Collaboration et al., 2020d) power

spectra. We also consider the Hubble constant measurement from the SH0ES Collaboration:

H0 = (73.2± 1.3) km s−1 Mpc−1 (Riess et al., 2021).

We use the Cobaya framework (Torrado & Lewis, 2021) with the Polychord nested sampler

(Handley et al., 2015a,b) for evidences (needed to compute the Bayes factors) and posteriors, and

the Py-BOBYQA minimizer (Powell, 2009; Cartis et al., 2018a,b) for best-fit determinations.

Plots are made with anesthetic (Handley, 2019) and GetDist (Lewis, 2019).

Prior Range
−δ− Log-uniform [10−5, 0.955]

|δ+/δ−| Log-uniform [0.1, 10]
f0 Uniform [0, 1]

ln
(
1010As

)
Uniform [2.55, 3.55]

ns Uniform [0.9, 1.05]
100θs Uniform [0.95, 1.15]
Ωbh

2 Uniform [0.02, 0.025]
Ωcdmh

2 Uniform [0.1, 0.15]
τreio Uniform [0.01, 0.2]

ΩK Fixed 0
mν [eV] Fixed 0

Aplanck (ycal) Normal 1± 0.0025

Table 4.1: Parameters used in this chapter and their priors. δ± and f0 are only for M3 model, Aplanck

(ycal)—for Planck likelihoods.

Our parameters and priors are described in Table 4.1. It is important to state that we

assumed massless neutrinos throughout the sampling to save computing time, as massive

neutrinos slow the Boltzmann solver by a factor of ∼ 10. This assumption shifts upwards the

inferred H0 values, but it does not affect the changes introduced by M3 (relative to ΛCDM

with standard recombination) in a meaningful way, as we demonstrate in Section B.1.2.

Full contour plots for the M3 clumping model are presented in Section B.2; here we will

focus on particularly important subspaces.
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Figure 4.6: Posteriors for H0 and the clumping parameter b of our M3 model (see Equation (4.1) for
its definition). We show 68% and 95% CL ellipses using Planck 2018 data alone and in combination
with SH0ES, which slightly increases H0 though does not prefer clumping. We also show the H0

posteriors from ΛCDM runs with standard recombination, as well as the prior on b for comparison.
The 68% C.L. intervals on clumping within M3 are log10 b = −5.9± 2.7 for Planck, log10 b = −5.3+4.2

−3.7

for Planck+SH0ES (and log10 b = −5.5± 3.0 for prior). Neither Planck only nor Planck+SH0ES data
prefer large clumping (b ∼ 1).
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4.4.1 H0 and model comparison

We show the 2D posterior for the clumping parameter b and H0 in Figure 4.6. Planck-only data

show no noticeable change in H0 compared to ΛCDM with standard recombination, and some

preference against high clumping compared to the prior. Adding a direct H0 measurement,

however, creates a weak preference for high clumping and high H0. Because most of the

posterior weight for the clumping parameter b is below unity, we observe almost no correlation

between b and H0.

66 67 68 69 70 71 72
H0 [km/(s Mpc)]
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−2

0

ln
P

(H
0
)

Planck ΛCDM: 68.02± 0.55

Planck M3: 68.04± 0.57

Planck+SH0ES ΛCDM: 68.79± 0.50

Planck+SH0ES M3: 68.87+0.51
−0.63

Figure 4.7: Posterior of H0 inferred from Planck data, without and with SH0ES, which shifts the H0

values upward as expected. The legend shows 68% C.L. intervals.

To explore the tail of the H0 posterior distribution, we show it in Figure 4.7. With

Planck-only data, M3 allows for a weak bump towards higher H0 (compared to standard

recombination), whereas the mean is not significantly shifted. For Planck data combined with
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SH0ES, the bump at higher H0 for M3 is stronger, given the additional pull from direct H0

measurement, though the shift in the mean is still not significant [∆H0 = 0.08 km/(s Mpc)].

∆χ2
best log10K

Planck 0 0.04± 0.15

Planck+SH0ES 5 0.14± 0.19

Table 4.2: Model comparison between M3 and ΛCDM by best-fit χ2 difference and Bayes factor
K between M3 and ΛCDM with Planck 2018 data. χ2 differences rounded to integers because of
uncertainty in the minimizer output. M3 does not fit Planck data alone better than ΛCDM. With
SH0ES, M3 allows for slightly better agreement. Bayes factors −0.5 ≲ log10 K ≲ 0.5 show no clear
preference between models (Kass & Raftery, 1995).

We show the best-fit χ2 differences and Bayes factors K between M3 and ΛCDM models

in Table 4.2. We have not found a better M3 fit to Planck 2018 data alone, compared to

ΛCDM with standard recombination. M3 is more successful than ΛCDM when considering

Planck+SH0ES, but ∆χ2 ≈ 5 can not justify three extra parameters. The Bayes factor K in

both cases is consistent with 1 (within < 1σ), meaning no preference to either model. The

Bayes factor is equal to the ratio of marginalized posterior probabilities of the models if they

are assumed equally probable a priori; more generally, posterior probabilities ratio is given by

the Bayes factor times prior probabilities ratio (Kass & Raftery, 1995). The best-fit parameters

are presented in Section B.3 and Table B.1.

We conclude that M3 is neither supported by the data nor rejected. This is probably

not surprising, since Planck data are fit well by ΛCDM with standard recombination and

with an ≈ 4σ tension between Planck and SH0ES it is challenging to get a detection in a

three-parameter model. One could get more support for M3 by considering additional H0 data.

Here, however, we will limit ourselves to the SH0ES measurement.

4.4.2 Low-ℓ Planck data analysis

To build intuition, we now check whether it is the damping tail that prevents Planck 2018

data from preferring M3. For that, we perform an analysis with only the ℓ < 1000 multipoles.

This range of scales is chosen to determine the sound horizon angular scale, though not the

damping tail.
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Figure 4.8: Confidence regions for clumping b versus H0 from Planck 2018 ℓ < 1000 data. The
absence of damping tail information from the high-ℓ data allows significant clumping, and thus larger
H0. The 68% C.L. intervals on clumping within M3 are log10 b = −5.9 ± 2.8 for Planck ℓ < 1000,
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−6.3 for Planck ℓ < 1000 + SH0ES (and log10 b = −5.5 ± 3.0 for prior). Within M3,
H0 = (68.51 ± 0.68) km/(s Mpc) for Planck ℓ < 1000, H0 = (70.8 ± 1.5) km/(s Mpc) for Planck
ℓ < 1000 + SH0ES. The H0 posteriors from ΛCDM runs are also shown, which do not reach the high
H0 values available to M3.

The corresponding 2D posteriors for b and H0 are plotted in Figure 4.8. Using Planck

ℓ < 1000, we find no significant deviation from standard recombination, as the clumping

posterior is only slightly shifted from the prior (towards lower values). However, with the
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additional pull from SH0ES, strong clumping b ∼ 1 is preferred, and we see a significant bump

towards higher H0. The best-fit parameters are presented in Section B.3 and Table B.2.

∆χ2
best log10K

Planck ℓ < 1000 0 −0.09± 0.18

Planck ℓ < 1000+SH0ES 11 0.21± 0.20

Table 4.3: Model comparison with Planck ℓ < 1000 data. χ2 differences are rounded to integers
because of uncertainty in the minimizer output. M3 still does not fit the CMB alone better than
ΛCDM, though the joint fit to CMB and SH0ES is improved further than with full Planck. The Bayes
factors K show no preference between models, as for full Planck in Table 4.2.

To determine whether clumping provides a better fit in this case, we perform model

comparison by two methods: best-fit χ2 and Bayes factor K, and show the results in Table 4.3.

We still do not find M3 to fit CMB data notably better than the standard model, with the

addition of SH0ES improvement is more significant (∆χ2
best = 11) than in the case of full

Planck and SH0ES (∆χ2
best = 5). Bayes factors K are still consistent with one, telling no clear

preference between the models. This shows that current Planck data do not prefer clumping

as the solution to the H0 tension, even without its damping tail.

4.4.3 Damping scale

As we have shown in the previous subsection, considering only ℓ < 1000 multipoles from

the Planck data opens more room for clumping than using the full data. We posit that the

key source of constraints on clumping is the damping-tail information contained in higher-ℓ

multipoles. So now we consider how the damping tail varies within our M3 model.

First, we plot the relative difference in TT,EE power spectra between the best fits in

Figure 4.9. Unlike in Figure 4.5, where the cosmology was kept fixed, producing significant

differences, here all the models manage to shift the parameters to fit the low-ℓ data. However,

they diverge significantly in the damping tail (ℓ ≳ 1500), and CMB-S4 will be able to measure

such deviations. More precisely, the χ2 difference between Planck ΛCDM and Planck+SH0ES

M3 best fits from Planck temperature, polarization and lensing is only ∆χ2
Planck ≈ 4, while

for CMB-S4 precision in temperature and polarization it can be as high as ∆χ2
CMB−S4 ≈ 1030
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Figure 4.9: Relative difference in CMB temperature TT and polarization EE power spectra between
our best fits (Section B.3 and Tables B.1 and B.2), with the ΛCDM best fit to Planck taken as reference.
Differences are small in the low-ℓ regime, but grow at smaller scales. Planck data can barely distinguish
them, but CMB-S4 will do so very clearly.

(if one assumes the Planck ΛCDM best fit as fiducial).

To build intuition, we formulate the damping-tail constraints in terms of the comoving
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damping scale rD and its angular analog θd = rD/r∗. We postprocessed the Planck runs to

get this information from CLASS.
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30
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d

Planck+SH0ES LCDM

Planck+SH0ES M3

Planck ` < 1000 + SH0ES LCDM

Planck ` < 1000 + SH0ES M3

Figure 4.10: Sound-horizon vs. damping angular scales [both multiplied by a prefactor to make
them O(1)] for Planck 2018 + SH0ES runs. The M3 and ΛCDM contours are quite similar for full
Planck+SH0ES (purple). On the contrary, for Planck ℓ < 1000+SH0ES (green), the M3 posterior is
significantly extended to lower values of both θs and θd, compared to ΛCDM.

Figure 4.10 presents the sound-horizon vs. damping angular scales for our Planck+SH0ES

runs. Within ΛCDM both angular scales are well measured, both for the full Planck data as

well as with the ℓ < 1000 modes only. The M3 contours, however, extend to lower values of

both θd and θs compared to ΛCDM. With full Planck the shift is not significant, while using

only ℓ < 1000 allows larger deviations to that region. With Planck ℓ < 1000 + SH0ES, the

error bar of θd within M3 is by a factor of 3 wider than within ΛCDM.

We note that the error bar of θs is widened similarly. However, the positions of acoustic
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peaks are not determined exactly by sound horizon angular scale alone. For example, stronger

damping would shift the power spectrum maxima to slightly lower ℓ. Acoustic peak positions

may also be affected by fine changes in visibility function shape introduced by clumping. Such

small changes might be important, since the characteristic differences in sound horizon scales

in our runs are only ∼ 0.1%. To assess this, we calculate the positions of first three peaks in

TT power spectrum given by CLASS [by fitting Gaussians to Dℓ = ℓ(ℓ+ 1)Cℓ/2π, as Planck

Collaboration (Planck Collaboration et al., 2020a)]. We find that M3 keeps peaks at the same

positions as ΛCDM, especially the second one. Therefore we plot second TT peak position

instead of θs in Figure 4.11.

Figure 4.11 also shows how H0 changes in the ℓpeak2,TT -θd plane, using Planck 2018 ℓ < 1000

and SH0ES data. The main trend is that H0 increases for smaller values of θd. Therefore,

lowering the angular damping scale θd is necessary to infer a higher H0 from CMB. But such

a change is disfavored by Planck damping tail data. This agrees with our previous subsections,

where full Planck + SH0ES did not show a preference for high clumping, and consequently

did not exhibit significant change in H0, while without ℓ ≥ 1000 multipoles the data allowed

for both.

4.4.4 S8 tension

We now move to discuss whether clumping is compatible with large-scale structure data, which

have not been considered in previous subsections.

A potentially interesting discrepancy between the CMB and LSS is the S8 tension in the

amplitude of matter fluctuations measured from the CMB and the LSS. Planck 2018 reported

Ωm = 0.315± 0.007 and S8 = 0.831± 0.017 (Planck Collaboration et al., 2020c), both of which

are higher than found in DES-Y1: Ωm = 0.264+0.032
−0.019, S8 = 0.783+0.021

−0.025 (Abbott et al., 2018).

Earlier recombination (for instance due to small-scale baryon clumping) decreases both the

Ωm and S8 values inferred from the CMB, and can therefore help to relieve the S8 tension

(Jedamzik & Pogosian, 2020).

However, the new DES-Y3 results (Ωm = 0.339+0.032
−0.031, S8 = 0.776± 0.017 (DES Collabora-
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Figure 4.11: Similar to Figure 4.10, but we replace θs by position of the second peak in TT power
spectrum ℓpeak2,TT and color different points by their value of H0, for our Planck ℓ < 1000 + SH0ES
M3 run. Within the M3 peak positions stay almost same regardless of θd. This proves that ℓ < 1000
multipoles from Planck give strong enough constraints on acoustic peaks. In this plane, H0 increases
for lower values of both θd and ℓpeak. However, the peak positions are measured with ∼ 0.1% precision
and do not allow to vary H0 significantly with other parameters fixed. This implies that a change in
the angular damping scale is necessary to infer higher H0 from the CMB.

tion et al., 2021)) do not show a preference for lower values of Ωm, which makes clumping

less favorable resolution. A reanalysis of DES-Y1 data according to the DES-Y3 pipeline

shifted the parameter estimates to Ωm = 0.303+0.034
−0.041, S8 = 0.747+0.027

−0.025 (DES Collaboration

et al., 2021), in better agreement with Planck on Ωm but worse on S8. Other experiments

also find a lower value of S8 than Planck and only a small difference in Ωm (< 1σ), including

the Kilo-Degree Survey (KiDS-1000, which reported Ωm = 0.305+0.010
−0.015, S8 = 0.766+0.020

−0.014

(Heymans et al., 2021)), unWISE galaxies (with Planck CMB lensing added, which obtained

Ωm = 0.295 ± 0.017, S8 = 0.776 ± 0.017 (Krolewski et al., 2021)), as well as an analy-
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sis of the growth of density perturbations from large-scale structure data (which yielded

Ωm = 0.311+0.021
−0.028, S8 = 0.7769± 0.0095 (García-García et al., 2021), see also (D’Amico et al.,

2020; Colas et al., 2020)).

To study in detail how clumping interfaces with the S8 tension, we show the one-dimensional

posteriors and two-dimensional confidence ellipses for H0, Ωm and S8 for a few selected runs in

Figure 4.12. We also show analogous posteriors and contours on Ωm and S8 from DES-Y3 (DES

Collaboration et al., 2021), DES-Y1 (Abbott et al., 2018) and KiDS-1000 (Heymans et al., 2021)

for comparison. This figure shows that Planck ℓ < 1000 M3 prefers low clumping and therefore

is closer to ΛCDM with standard recombination, exhibiting similar correlations between these

three parameters. Note that within ΛCDM there is a significant negative correlation between

H0 and Ωm and a weaker negative correlation between H0 and S8. Therefore increasing H0

alone (for instance by coadding direct H0 measurements) decreases both Ωm and S8.

The Planck ℓ < 1000 + SH0ES M3 confidence region exhibits high clumping and explores

a different direction, to even lower Ωm and S8. Finally, in full Planck with SH0ES the

damping-tail data disfavor high clumping, making the contour close to the standard ΛCDM.

We note that a rigorous study of the S8 tension within M3 would require a reanalysis

of the LSS data, as clumping can introduce biases with respect to ΛCDM with standard

recombination. Such an analysis is beyond the scope of this work, and given that this tension

is weaker than the H0 one, we tentatively conclude that adding LSS data to our runs would

not significantly change whether M3 is preferred.

4.4.5 Baryon drag scale

As advanced above, the addition of clumping changes the length of the sound horizon due to

the nonstandard recombination. This is important for the interpretation of baryon acoustic

oscillations (BAO) in galaxy surveys at low z, so we now consider how the BAO standard ruler

is affected by clumping. The relevant distance is the drag scale rdrag—the sound horizon at

the drag epoch (when the baryon optical depth is 1). The drag epoch occurs slightly later than

last scattering, which makes the drag scale larger than the sound horizon rS at last scattering,
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Figure 4.12: Confidence regions and one-dimensional posteriors for H0, matter fraction Ωm and
rescaled clustering amplitude S8. Planck ℓ < 1000 M3 has low clumping, therefore is close to ΛCDM
and exhibits similar negative H0–Ωm and H0–S8 correlations, so increasing H0 decreases both Ωm

and S8. Planck ℓ < 1000 + SH0ES M3 can reach high clumping (see Figure 4.8), giving rise to even
lower Ωm and S8. High clumping is disfavored by the damping-tail data of full Planck+SH0ES, so
the corresponding contours are closer to ΛCDM. We show the confidence regions and posteriors from
DES-Y3 (DES Collaboration et al., 2021), DES-Y1 (Abbott et al., 2018) and KiDS-1000 (Heymans
et al., 2021) for reference. DES data do not constrain H0 significantly compared to their prior, which
is flat in the range 55 to 91 km/(s Mpc).
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albeit only marginally.

Standard-ruler BAO measurements constrain the combinations dM (z) /rdrag and H (z) rdrag

(Alam et al., 2017), where dM is the comoving angular-diameter distance. In a flat ΛCDM

cosmology,

dM =

∫ z

0

cdz

H (z)
, (4.9)

and the dominant contributors are the cosmological constant and the nonrelativistic matter,

since for low z

H (z) ≈ H0

(
1 + Ωm

[
(1 + z)3 − 1

])1/2
.

For a constant Ωm, both dM (z) /rdrag and H (z) rdrag depend only on H0rdrag. On the CMB

side, the sound-horizon angular scale θs is also proportional to H0rdrag for fixed Ωm, since rdrag

is very close to rS [see Equation (4.6)]. The early integrated Sachs-Wolfe effect in the CMB

determines the physical matter density ωm = Ωmh2, which indeed stays roughly constant in

our sampling. Therefore, as H0 increases, Ωm decreases, which causes changes in dM (z) /rdrag

and H (z) rdrag at low redshift, compared to their high-redshift analog θs (effectively fixed by

the CMB). As a consequence, clumping models that fit the CMB develop a tension with BAO

data (see Jedamzik et al. (2021) for a broader discussion).

As an example, in Figure 4.13 we show the relative difference between these quantities for

ΛCDM (best fit to Planck) and for M3 (best fit to Planck+SH0ES), and overlay the SDSS

DR12 measurements (Alam et al., 2017). By eye, we can tell that the Planck+SH0ES M3

best fit is mildly disfavored by the transversal [dM (z) /rdrag] BAO data, while for the radial

[H (z) rdrag] BAO the data scatter is too large to tell. Using the full covariance matrix, we

find ∆χ2
BAO ≈ −3.6, indeed mildly disfavoring M3.

At higher redshifts, the relative difference in dM (z) /rdrag tends to 0—so as to match

≈ 1/θs to the CMB at recombination. The H (z) rdrag relative difference, on the other hand,

tends to a negative constant—since ωm changes weakly, expansion rate at high redshifts is

almost the same, so the difference is driven by the change in sound horizon (and thus drag

scale), which is ≈ 1% for the Planck+SH0ES M3 best fit compared to Planck ΛCDM best fit.

While the M3 best fit to Planck+SH0ES is in mild tension with the current BAO measure-
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Figure 4.13: Relative difference in the BAO distances—dM (z) /rdrag and H (z) rdrag, for M3 best
fit to Planck+SH0ES, compared to the ΛCDM best fit to Planck (see Section B.3 and Table B.1 for
exact parameters) SDSS DR12 measurements (Alam et al., 2017) are overlaid. At higher redshifts, the
relative difference in dM/rdrag tends to 0 and in Hrdrag—to a negative constant ≈ −0.01.
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ments, that does not necessarily prove that increasing H0 in M3 is always disfavored by BAO

data. There remains a possibility that model parameters can be adjusted to accommodate

the datasets and provide a better joint fit. To assess this, we plot dM (z = 0.51)/rs versus

H0 for our Planck ℓ < 1000 + SH0ES M3 run in Figure 4.14, overlaying the SDSS DR12

measurement. The upper left dots have low clumping, so they follow the standard ΛCDM

degeneracy direction. The right dots, with high clumping, follow a different trend, but still

develop more and more tension with SDSS for increasing H0, as explained in Jedamzik et al.

(2021). We remind the reader that this figure shows only one of three SDSS D12 measurements,

and the trend is similar in all, which makes the tension stronger.

Standard-ruler BAO data are being improved, and in the future it will become more

decisive for or against the clumping model. A notable example is the Dark Energy Spectroscopic

Instrument (DESI), which is already operational. DESI is expected to provide subpercent

precision measurements of dM/rdrag in seven bins for 0.65 ≤ z ≤ 1.25 (DESI Collaboration

et al., 2016a), which alone can give ∆χ2 ≈ 20 between our best-fit models. At higher

redshifts, 21-cm data will provide a measurement of H rdrag to percent-level precision using on

velocity-induced acoustic oscillations (VAOs) (Muñoz, 2019). Our clumping model predicts

only a modest deviation of the radial H rdrag, so transverse BAO measurements have more

constraining power.

We note that the change in recombination induced by small-scale clumping is likely to

affect the shape of BAO fitting templates, and henceforth the distance-scale extraction from

observational data. A proper analysis of BAO data within our M3 model should check whether

dM (z) /rdrag and H (z) rdrag are recovered without any biases compared to standard extraction

procedures. A quick test with z = 0 correlation functions in Figure 4.15 shows that change in

hrdrag overwhelms the possible bias in drag scale reconstruction. We leave a detailed study of

the correlation function in the presence of clumping for future work.
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Figure 4.14: Scatter plot of dM (z = 0.51)/rs versus H0 for our Planck ℓ < 1000 + SH0ES M3 run,
which exhibits the highest clumping. We overplot the SDSS DR12 measurements at this redshift in
magenta, where the semitransparent band shows its 1σ error bar. Even though high clumping (in the
right) produces higher H0 than inferred from the ΛCDM degeneracy line (in the upper left), larger
values of H0 still cause tension between CMB and the BAO.
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Figure 4.15: Correlation functions at z = 0 for ΛCDM (best fit to Planck) and for M3 (best fit to
Planck+SH0ES), rescaled with each baryon drag scale, which gives almost perfect agreement. The
lower panel shows the difference between the two lines magnified by an additional factor of 100. The
comoving drag scale rdrag decreases by 1% between the two cases, but h increases by 4%, so that the
drag scale in Mpc/h units hrdrag increases by 3%. Such change is clearly noticeable and overwhelms
any possible bias arising from template-shape differences.
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4.5 Forecasts for future CMB experiments

Having exploited the current data at our disposal, we now perform forecasts for two future

CMB experiments: the Simons Observatory (SO, Ade et al. (2019)) and CMB-S4 (Abazajian

et al., 2019), which will have much better damping-tail precision and therefore will be able to

test the clumping model much better.

We have written mock likelihoods for these two experiments within Cobaya4 adapting the

ones in MontePython (Audren et al., 2013; Brinckmann & Lesgourgues, 2019), and created

the models for these two experiments using deproj0 noise curves for temperature and E-mode

polarization fluctuations. We focus on primary CMB anisotropies, rather than lensing map.

Standard Clumping
best fit to Planck +SH0ES

δ− n/a (0) −0.955
δ+ n/a (0) 1.320
f0 n/a (1) 0.652
b n/a (0) 0.439

109As 2.1094 2.1132
ns 0.96604 0.96552

100θs 1.04192 1.04177
Ωbh

2 0.022416 0.022714
Ωcdmh

2 0.11945 0.11999
τreio 0.0514 0.0542

H0 [km/(s Mpc)] 68.146 70.916
ΩK 0

mν [eV] 0

Table 4.4: Fiducial parameters for our forecasts.

Throughout this section we consider two fiducial power spectra, which bracket our current

knowledge on clumping during recombination: for the first we assume standard recombination

(ΛCDM) and take CMB + direct H0 measurement, whereas for the second we choose a

model with nonzero clumping and higher H0 and consider only CMB. Full parameter sets are

presented in Table 4.4. For each we perform model comparison between M3 and LCDM, and

show posteriors for H0 and the clumping parameter b. For the H0 measurement, we assume

4https://github.com/misharash/cobaya_mock_cmb
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SH0ES, though we have checked that an H0 precision improvement to 1% will not change our

conclusions.

4.5.1 Fiducial with standard recombination

We begin by considering the case that the CMB power spectra of SO/CMB-S4 continue to

agree with the standard ΛCDM model [and a low H0 ≈ 68.1 km/(s Mpc), where the parameters

are taken from our best fit to Planck data with massless neutrinos and presented in Table 4.4].

The question we address is whether the degeneracy between clumping and H0 will still be able

to bring future CMB experiments in closer agreement with a direct H0 measurement in this

case. Since our fiducial is ΛCDM with standard recombination, M3 can not fit the data any

better, so model comparison on CMB-only data will not be informative. Therefore, in this

subsection we consider only future CMB data added to SH0ES.

We show the model comparison between M3 and ΛCDM in Table 4.5. Unlike with Planck,

SO/CMB-S4+SH0ES have negligible χ2 improvement. Bayes factors K stay consistent with 1,

indicating no clear preference between the models.

∆χ2
best log10K

Planck+SH0ES 5 0.14± 0.19

SO baseline+SH0ES 0 0.15± 0.22
CMB-S4+SH0ES 0 −0.02± 0.22

Table 4.5: Model comparison forecast with a standard recombination fiducial (see Section 4.5.1). All
χ2 differences are rounded to integers because of uncertainty in the minimizer output. If CMB data
continues to be consistent with standard recombination and low H0, M3 will be not able to allow CMB
to agree with a direct H0 measurement. Bayes factors −0.5 ≲ log10 K ≲ 0.5 tell no clear preference,
as in Tables 4.2 and 4.3.

Figure 4.16 provides a closer look into the H0 posterior. If future CMB power spectra

continue to agree with ΛCDM, M3 does not allow any significant H0 shift even with the pull

from SH0ES. As expected, the increased CMB precision shifts the H0 posterior to our input

CMB fiducial of H0 ≈ 68 km/(s Mpc), shown as the gray dashed vertical line. The posterior

for b is very close to its prior, except that high values b ∼ 1 are disfavored (and thus does not

allow any correlations with H0), so we do not show it here.
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Figure 4.16: Posterior for H0 in our forecasts with a standard recombination fiducial, in all cases
with CMB + SH0ES. The solid lines assume M3, whereas dashed assume ΛCDM with standard
recombination. The gray dashed line shows the input fiducial value of H0. While the maximum
posterior values are shifted to higher H0 with respect to the input, due to the addition of a direct H0

measurement, the shift from ΛCDM to M3 is negligible for both experiments. We present 68% C.L.
intervals on H0 in the legend. For clumping (within M3) they are log10 b = −5.3+4.2

−3.7 for SO+SH0ES,
log10 b = −5.8+3.7

−3.2 for CMB-S4+SH0ES (and log10 b = −5.5± 3.0 for prior).

4.5.2 Fiducial with clumping

We next investigate a case that in truth contains substantial small-scale clustering. We generate

fiducial power spectra for SO/CMB-S4 following the best fit of M3 to Planck+SH0ES, which

in particular has b ≈ 0.44 and H0 ≈ 70.9 km/(s Mpc) (full parameter set in Table 4.4). In

this case, our aim is to determine how clearly clumping could be discerned by future CMB

data, without any direct H0 measurements.

We present the results of our model comparison in Table 4.6. If there is such clumping in
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∆χ2
best log10K

Planck 0 0.04± 0.15

SO baseline 21 1.57± 0.23
CMB-S4 44 5.54± 0.23

Table 4.6: Same as Table 4.5, but for a nonzero clumping fiducial (see Section 4.5.2). In this case,
both experiments can show a clear preference for M3, given their large ∆χ2

best. In terms of the
Bayes factor K, the evidence against ΛCDM with standard recombination would be strong for SO
(1 < log10 K < 2), and decisive for CMB-S4 (log10 K > 2) (Kass & Raftery, 1995).

CMB, SO data will show a clear preference for clumping model, and CMB-S4 will be even

more decisive. This is the only case when the Bayes factor K is significantly different from 1.

With SO data M3 model is deemed ∼ 30 times more probable than ΛCDM (strong evidence

in favor of M3), and with CMB-S4—∼ 300, 000 (decisive evidence in favor of M3) (Kass &

Raftery, 1995).

We show the posteriors of b and H0 in Figure 4.17, where the difference in H0 between

standard and clumpy recombination is clear for both SO and CMB-S4. We note that the

posteriors for both H0 and b peak at lower values than our input fiducials, as lower clumping

(and therefore lower H0 for the same θs) is favored by the prior. Also note that all results

in this subsection are based on CMB data only, without any direct H0 measurements. It is

clear that future CMB data alone will suffice to detect clumping, as the posterior becomes

much better constrained (against the prior). For SO the lowest values (b ≲ 10−2) are clearly

disfavored by the data, whereas for CMB-S4 the limits become only tighter.

4.6 Conclusions

The Hubble tension poses an increasingly challenging problem to the standard cosmological

model. A possible solution is to alter recombination, for instance by adding small-scale baryon

clumping, which allows higher H0 values to be inferred from CMB data. We have studied

whether our flexible clumping model M3, having three spatial zones with variable densities

and volume fractions, can solve the tension.

We have found that
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Figure 4.17: Posteriors of b and H0 for forecasts with a clumping fiducial (best fit to current
Planck+SH0ES, see Section 4.5.2). As is clear from the right panel, M3 and ΛCDM yield different
H0 values for the same data (both for SO and CMB-S4). In this case, the clumping parameter b will
be measured to be nonzero at high significance. The 68% C.L. intervals on clumping within M3 are
log10 b = −0.93+0.51

+0.16 for SO, log10 b = −0.53± 0.11 for CMB-S4 (and log10 b = −5.5± 3.0 for prior).
Within M3, H0 = 70.23+0.54

−0.47 km/(s Mpc) for SO and H0 = (70.36± 0.39) km/(s Mpc) for CMB-S4.

(i) Current Planck data does not prefer clumping, even when adding the local H0 measure-

ment from the SH0ES Collaboration.

(ii) Including only ℓ < 1000 multipoles, Planck data allow for a larger shift to higher values
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of H0, as the damping tail is more weakly constrained.

(iii) Increasing H0 within ΛCDM decreases both Ωm and S8. The clumping model M3 follows

the same trend, which relieves the potential S8 tension with weak-lensing data.

(iv) However, the same change of Ωm is in tension with BAO standard-ruler measurements

at low z. We showed that the BAO template is largely unaltered in the presence of

clumping.

We have made forecasts for two future CMB experiments—Simons Observatory and CMB-

S4—which will better measure the damping tail. First, we have found that if the power spectra

stay consistent with ΛCDM (i.e., with standard recombination), increasing H0 via clumping is

strongly disfavored. Second, we have shown that the current best-fit model to Planck+SH0ES

with clumping (b ≈ 0.4) can be detected at high significance based solely on future CMB data.

Therefore, future CMB experiments will provide considerable diagnostic power to investigate

small-scale clumping at the epoch of recombination and shed light onto possible solutions to

the H0 tension.

4.6.1 Subsequent developments

After we published this study (Rashkovetskyi et al., 2021), there have been further interesting

developments on the topic, which we summarize here. Galli et al. (2022) tested one of

the Jedamzik & Pogosian (2020) models with data from the Atacama Cosmology Telescope

(ACT, earlier considered by Thiele et al., 2021) and South Pole Telescope (SPT), finding

no preference for clumping for CMB and some preference for CMB+SH0ES combination

(yielding a middle value of H0). They also made promising forecasts for the full SPT-3G

survey, Simons Observatory, and CMB-S4. Lynch et al. (2024a) considered more general

parametrized variations in the recombination history and found they prefer a higher H0 from

CMB+BAO. Lynch et al. (2024b) used the DESI DR1 BAO measurements and found that

preferred recombination histories resemble effects of small-scale clumping and they reduce the

Hubble tension between CMB+BAO and SH0ES to 2σ. Mirpoorian et al. (2025b) suggested

130



a 4-parametric data-driven model for modified recombination, reported the Hubble tension

reduced to below 2σ, improved fits to Planck CMB + DESI DR1 BAO and relief of S8 tension.

Jedamzik et al. (2025) report mild to moderate preference for the accurate recombination

modifications in the primordial magnetic fields scenario. Finally, Mirpoorian et al. (2025a) very

recently argued that the 4-parametric modified recombination model resolves the emerging

tensions between DESI DR2 BAO, CMB and Type Ia supernovae better than the dynamic

dark energy.
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Chapter 5

Galaxy selection using the thermal

Sunyaev-Zeldovich effect (a way

beyond 2-point)1

5.1 Introduction

Modern cosmology is a high-precision science thanks to a rich variety of data collected.

The large-scale structure of the Universe contributes a major portion of this data. Most

important techniques include baryon acoustic oscillations distance measurements (e.g., DESI

Collaboration et al., 2025b,a) and full-shape clustering analyses (DESI Collaboration et al.,

2024b,c), both based on galaxy redshift surveys.

Looking into the future, it is important to determine priorities for the next spectroscopic

surveys. The expansion towards higher redshifts is well motivated by the primordial Universe

studies. However, observations pose new challenges as spectral features of galaxies redshift

out of the near-visible range accessible to ground-based telescopes (Ferraro et al., 2022).

In contrast, measuring more galaxy spectra at lower redshifts is easier technically. We

already have a dense sample in the DESI Bright Galaxy Survey (Hahn et al. (2023)). Only a

1This chapter is work in progress, to be published as Rashkovetskyi et al. (2025a)
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small portion of it is used for the BAO and full-shape analyses (DESI Collaboration et al.,

2025f, 2024b, 2025a). In the future DESI upgrade, DESI-II, the density of the luminous red

galaxy (LRG) sample will also increase greatly (Schlegel et al., 2022). However, the scientific

case for such higher-density samples is not so clear and specific.

There are promising ideas for leveraging information from different galaxy environments that

can benefit from dense samples. One is density-marked clustering, which assigns additional

weight to galaxies based on a local density estimate at their location. It was originally

introduced in White (2016) to enhance modified gravity tests, and was later tuned to give

tighter constraints on neutrino mass (Massara et al., 2021) and other cosmological parameters

(Massara et al., 2023, 2024). Another is density-split clustering, which splits galaxies into

subsamples based on the local density estimate. It was introduced for better modeling of

redshift-space distortions in Paillas et al. (2021). Later works predict tighter constraints on

standard cosmological parameters and neutrino masses (Paillas et al., 2023), or primordial

non-Gaussianity (Morawetz et al., 2024). A simulation-based model of density-split clustering

was built (Cuesta-Lazaro et al., 2024) and applied to BOSS CMASS data (Paillas et al., 2024),

surpassing the standard analysis.

A number of works demonstrated the benefit of combining galaxy redshift surveys with

data on secondary cosmic microwave background (CMB) anisotropies, particularly lensing. For

example, Kim et al. (2024); Sailer et al. (2024) cross-correlate lensing with spectroscopic galaxies

to better constrain the growth of cosmic structure, and Krolewski et al. (2024); Bermejo-

Climent et al. (2024) improve measurements of primordial non-Gaussianity. This combination

of probes is very promising, because DESI is taking galaxy spectra at an unprecedented rate,

and the next CMB experiments like Simons Observatory (Ade et al., 2019) and CMB-S4

(Abazajian et al., 2019; Carlstrom et al., 2019) have great prospects for secondary CMB

anisotropies, including lensing and Sunyaev-Zeldovich effects.

We decided to use the thermal Sunyaev-Zeldovich (tSZ) effect. It is inverse Compton

scattering of cosmic microwave background (CMB) photons on free thermal electrons moving

randomly (whereas bulk motions give rise to the kinetic or kinematic Sunyaev-Zeldovich effect).
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This process results in a net increase in energy of scattered photons and creates a distinct

frequency-dependent distortion in the CMB spectrum. The relative change in photon energy

is approximately equal to the Compton y parameter, which is proportional to the integral of

free electron density ne and temperature Te along the path (with length element dr; Planck

Collaboration et al., 2016a; Sunyaev & Zeldovich, 1972):

y =

∫
kBTe

mec2
neσTdr, (5.1)

other quantities are constants: electron rest mass energy mec
2, Boltzmann’s constant Te and

Thomson scattering cross-section σT . Accordingly, the effect is strongest in ionized, hot and

dense gas in or around galaxy clusters (as suggested by Sunyaev & Zeldovich, 1970, 1980).

The clusters represent a distinct environment.

The tSZ data comes from CMB telescopes independent of DESI, whereas density estimates

depend on the galaxy observation strategies. Using different datasets would allow us to

check their consistency, check for systematics and potentially discover new fundamental

tensions. Specific improvements could include testing the conformity of different galaxy sub-

types (e.g., Patej & Eisenstein, 2016), improving the redshift-space distortion modeling for

full-shape clustering analyses by removing a small fraction of the strongest Fingers of God

(Baleato Lizancos et al., 2025), obtaining multiple tracers with better-constrained biases for the

primordial non-Gaussianity measurements (similarly to Sullivan et al., 2023) or constraining

environmental effects on galaxy formation or galaxy-halo connection (e.g., Yuan et al., 2023).

We need to remark that Sunyaev-Zeldovich maps have been used for cluster studies: their

detection, mass determination, and more (Planck Collaboration et al., 2016b; Hilton et al.,

2021; Robertson et al., 2024; Bocquet et al., 2023; Kornoelje et al., 2025). But rigorously

detected and confirmed cluster candidates are rare. We aim to extract more information from

the lower signal-to-noise parts, which comprise a much bigger fraction of the map.

This work is not going to provide the final answers and methodology, but rather motivate

further developments. It is structured as follows: Section 5.2 introduces the data and

simulations we use, Section 5.3 details our processing of real data and provides its results,
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Section 5.4 describes our simulation-based toy model, compares it with data and shows new

insights, Section 5.5 concludes with a summary and a future outlook.

5.2 Data

5.2.1 Galaxy catalog: DESI DR1 LRG

The Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al., 2016a, 2022)

conducts a 5-year galaxy redshift survey. Its scientific program has been successfully validated

(DESI Collaboration et al., 2024d) alongside the Early Data Release (DESI Collaboration

et al., 2024e). The key results based on Data Release 1 (DESI Collaboration et al., 2025c,

recently made public) include clustering catalogs and two-point statistics measurements (DESI

Collaboration et al., 2024a), baryon acoustic oscillation (BAO) distance measurements from

galaxies, quasars (DESI Collaboration et al., 2025f) and Lyman-α forest (DESI Collaboration

et al., 2025d) along with their detailed implications for cosmological models (DESI Collaboration

et al., 2025e); and full-shape clustering of galaxies and quasars (DESI Collaboration et al.,

2024b) with their cosmological analysis (DESI Collaboration et al., 2024c). Furthermore,

updated BAO measurements from Lyman-α (DESI Collaboration et al., 2025b), galaxies and

quasars with accompanying cosmological interpretations (DESI Collaboration et al., 2025a)

are also available, based on Data Release 2 (DESI Collaboration et al., 2026).

We use Luminous Red Galaxies (LRG; Zhou et al., 2023) from the DESI DR1 clustering

catalog (DESI Collaboration et al., 2024a, 2025c). We chose LRG because their redshift range

(0.4 < z < 1.1) covers the peak in redshift distribution of Sunyaev-Zeldovich clusters (Hilton

et al., 2021). We discard galaxies at z > 0.85 because then both the LRG density (DESI

Collaboration et al., 2024a) and the SZ cluster abundance (Hilton et al., 2021) drop.

5.2.2 Sunyaev-Zeldovich map: ACT DR6

The Atacama Cosmology Telescope (ACT; Fowler et al., 2007; Choi et al., 2020) was a

ground-based cosmic microwave background (CMB) experiment. Compared to the space-
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based Planck mission (Planck Collaboration et al., 2020a), it has a smaller sky fraction, but

reaches small angular scales thanks to higher resolution, and measures the CMB polarization

with higher precision due to lower instrumental noise. Both of these are very important for

Sunyaev-Zeldovich analyses.

We use the thermal Sunyaev-Zeldovich Compton y parameter map from ACT DR6 (Coulton

et al., 2024). We rely on the accompanying noise simulations (Atkins et al., 2023) to estimate

the signal-to-noise ratio in our analysis.

5.2.3 Simulations: AbacusSummit halo catalogs

We also use a z = 0.8 snapshot of a
(
2h−1Gpc

)3 cubic box (for the fiducial cosmology) from

the AbacusSummit suite of N -body simulations (Maksimova et al., 2021) produced with

Abacus code (Garrison et al., 2021). The halos have been identified with the CompaSO

halo finder (Hadzhiyska et al., 2022). We use a galaxy catalog produced within the halo

occupation distribution (HOD) galaxy-halo connection framework, efficiently implemented

in AbacusHOD (Yuan et al., 2022) with parameters based on Yuan et al. (2023). This

galaxy catalog was one of the base cubic boxes for Abacus-2 cut-sky mocks described in DESI

Collaboration et al. (2025f).

5.3 Measurements

5.3.1 Methodology and challenges

We divide the LRGs into subsamples (“SNR bins”) according to the signal-to-noise ratio at

their location in the ACT DR6 + Planck y map (Coulton et al., 2024). First, we match the

positions of the LRGs from the DESI clustering catalog to the pixels in the map. Second, we

compute the pixel-level standard deviations in y using the corresponding 304 Gaussian noise

simulation (Atkins et al., 2023). Finally, we compute the signal-to-noise ratio in each pixel by

dividing the y value by its standard deviation.

Such external selection of galaxies imposes complex geometry changes that affect the
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estimation of the clustering statistics. E.g., the Landy-Szalay estimator (Landy & Szalay,

1993) for the correlation function between samples 1 and 2 (which may be identical or different):

ξ̂LS12 =
D1D2 −D1R2 −R1D2

R1R2
+ 1, (5.2)

where D1D2 are the (binned) pair counts between data (galaxies) from sample 1 and data 2,

D1R2 are the pair counts between data 1 and random points (reflecting the survey geometry

and selection etc) for sample 2, R1D2 are between random points 1 and data 2, and R1R2 are

between random points 1 and 2.

The key to the problem is that the full-survey random catalogs are not representative of our

subsamples. One might think that imposing the same on-sky position filter on random points

would be a solution, however, it is not perfect. The resulting randoms would be (narrow)

columns extended along the line of sight, whereas a significant portion of selected galaxies

would be truly clumped around the cluster position in 3 dimensions.

It is possible to leave the unusually-looking clustering measurement and model it consistently.

But we have decided to keep the correlation functions more intuitive. To achieve this, we avoid

the issue with the subsample geometry by employing an asymmetric Davis-Peebles estimator

(Davis & Peebles, 1983) for the correlation function:

ξ̂DP
12 =

D1D2

D1R2
− 1. (5.3)

The D1D2 and D1R2 are the same pair counts as in the Landy-Szalay estimator (Equation (5.2)).

However, we note that the randoms representing sample 1 are not required: neither R1D2

nor R1R2 are involved. The randoms are only necessary for sample 2. Therefore, with this

estimator, we can compute the correlation function between the tSZ subsample (as 1) and the

full LRG sample (as 2).

We also apply filters to the y map for two reasons. First, a filter matched to a cluster SZ

profile would optimally detect them and recover their positions (Turin, 1960). Second, the

environmental influence of a cluster is likely to extend further than its Compton parameter

profile. Our fiducial filter is not thoroughly matched, but has a Gaussian shape with a 2.4
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arcmin full width at the half-maximum for simplicity. The single filter in the ACT DR5

catalog paper has the same scale (Hilton et al., 2021). We apply the same filter to all the noise

simulations to obtain the corresponding pixel-wise standard deviation map.

5.3.2 Larger-scale clustering and galaxy bias

First, we compute the larger-scale cross-correlation functions between the different SNR bins

and the full LRG sample. We use the radial (s) and angular (µ) binning. We disregard the

pairs located too closely on the sky2 for two reasons. The first is to avoid using pairs of

galaxies belonging to the same SZ pixel, or associated with the same line of sight smeared by

the beam and the filter. The second is to mitigate the DESI fiber assignment incompleteness

effects (Pinon et al., 2025). We only count pairs with the angular separation above 0.1 degrees

(6 arcmin)3.

We show the resulting isotropic cross-correlation functions in Figure 5.1 with covariances

estimated using the jackknife technique. We see a significant clustering enhancement in the

monopole as the tSZ detection level increases, even though we stop at 4σ, which was the

threshold for cluster candidates in Hilton et al. (2021)4. This almost certainly corresponds to

an increase in galaxy bias. 0 to 1 σ subsample appears very similar to the full LRG sample (as

will continue to hold in many other respects). For reference, Table 5.1 provides the number of

galaxies in each SNR bin.

We should remark on the negative signal we obtain, contradicting the theoretical definition

of the tSZ Compton y parameter (Equation (5.1)). Instrumental (or atmospheric) noise plays

a certain part. Kinematic Sunyaev-Zeldovich effect, resulting from the bulk motions of free

electrons, can have different signs and can become partially confused with “negative” thermal

effect. Other components, like the cosmic infrared background, may also leak into the thermal

2This is technically known as the theta (θ) cut.

3This leaves µ ≈ 1 bins with no pair counts and undefined correlation functions. We discard these bins and
average over the remaining bins to obtain the correlation function monopole.

4However, bear in mind the simplicity of our filter, the matched filters of Hilton et al. (2021) should be
more optimal.
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Sunyaev-Zeldovich reconstruction, potentially adding negative signal (Coulton et al., 2024).
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Figure 5.1: Large-scale isotropic (monopole) cross-correlation functions of different SNR bins with
the full LRG sample. (Hereafter, we apply our fiducial Gaussian filter to the tSZ y parameter map,
and use the jackknife technique to estimate errorbars.) There is a significant clustering enhancement
with increasing tSZ detection level even below the threshold for cluster candidates (4σ in Hilton et al.,
2021).

For clarity, we seek to summarize each line in Figure 5.1 with a single number. A simple way

is to find the scaling for the full LRG correlation function to best match the cross-correlation

function with any given signal-to-noise bin. This multiplier should be similar to the ratio of

the linear galaxy biases between the SNR subsample and the full LRG sample. Accordingly,

we also refer to this scaling as relative galaxy bias.
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SNR bin NLRG

(−∞,−2) σ 25101
[−2,−1) σ 130331
[−1, 0) σ 308498
[0, 1) σ 305819
[1, 2) σ 127875
[2, 3) σ 25469
[3, 4) σ 3577
[4, 5) σ 981
[5, 6) σ 484

[6,∞) σ 676
Total 928811

Table 5.1: Number of DESI DR1 LRGs (0.4 < z < 0.85 and in the overlap with ACT footprint) in
different tSZ SNR bins.

The jackknife covariance estimates for each correlation function allow us to estimate the

precision of the scaling. However, we have not estimated the covariances between different

cross-correlation functions shown in Figure 5.1 consistently. This makes our relative bias

errorbar estimates imperfect and approximate.

We show the resulting galaxy biases of our subsamples (relative to the full LRG sample)

in Figure 5.2. The picture is consistent with the conclusions we have drawn from Figure 5.1:

the increase of galaxy bias with the tSZ detection level, and the 0 to 1 σ bin being close to

average over all LRGs. In addition, we can inspect more categories at negative signal-to-noise,

different from the full LRG but not so significantly deviating from each other.

5.3.3 Small-scale line-of-sight clustering and velocity dispersions

The cluster (supercluster) peculiar velocities are most apparent in configuration space at small

scales near the line of sight. Here we switch from s and µ to the line-of-sight (π) and the

perpendicular (on-sky, rp) separations between the galaxy pair members.

Accordingly, we plot the line-of-sight small-scale correlation functions for our SNR bins

in Figure 5.3. We notice an increase in correlation functions with the tSZ detection level

in each bin, similar to the trends in larger-scale correlation functions (Figure 5.1). More

interestingly, the slopes of the curves are also noticeably different, although it is hard to judge
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Figure 5.2: Galaxy bias of different SNR bins relative to the full LRG sample. The bias increase
(clustering enhancement) consistent with Figure 5.1 can be seen more concisely.
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the significance of these differences visually.
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Figure 5.3: Small-scale line-of-sight cross-correlation functions of different SNR bins with the full
LRG sample. There is not only an increase in amplitude, but also a flattening of the slopes of the
curves with increasing tSZ SNR, indicating regions with higher tSZ signal have hotter small-scale
velocity dispersions.

To better quantify the slopes, we fit exponentials to the correlation functions:

ξ(π) ≈ C exp

(
−
√
2
|π|
σπ

)
. (5.4)

This is motivated by the exponential fit to the distributions of peculiar radial velocities (Peebles,

1976) and a physical Press–Schechter (Gaussian mixture) model (Sheth, 1996). σπ gives the

one-dimensional dispersion (standard deviation).
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Figure 5.4: One-dimensional comoving coordinate dispersions σπ from small-scale line-of-sight
clustering. Approximate conversion to one-dimensional (line-of-sight) velocity dispersions σ1d is
provided on the right. The dispersion values increase with the signal-to-noise ratio, except the 5 to 6
σy bin.
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We plot the fit results for each tSZ SNR bin in Figure 5.4. We measure them in comoving

line-of-sight separations, but also provide an approximate conversion to line-of-sight peculiar

velocities using the average redshift. The dispersions increase with the tSZ detection level,

more significantly for positive values. The last, 5 to 6 σy bin, is an exception, although it has

a large errorbar. The 0 to 1 σy bin is again very close to the average LRG.

Another natural way to summarize Figure 5.3 would be by integrating the correlation

functions. This is directly related to the average number of any LRGs in narrow cylinders

with axes along the line of sight centered on LRGs belonging in a particular SNR bin. We

provide this summary in Figure 5.5. The average number of neighbors increases, in accordance

with the expectation that LRGs with higher tSZ SNR tend to live in larger clusters.

We have found even more striking differences in the abundance of galaxies with many

neighbors in different SNR bins. However, it is hard to visualize and interpret more meaningfully.

We provide it in Figure C.1 and Section C.1 for posterity.

5.4 Simulation-based toy model

We aim to simulate both galaxy catalogs and y map consistently. Galaxy catalogs are often

made from N -body simulations using a halo occupation distribution. The process has been

highly optimized in AbacusHOD (Yuan et al., 2022). Therefore we choose to make a Compton

parameter map from a halo catalog.

We are aware of the advanced models for SZ-halo connection informed by hydrodynamic

simulations or observations (e.g., Stein et al., 2020; Osato & Nagai, 2023; Liu et al., 2025).

However, in this proof-of-concept work, we choose to develop a simpler model that is easier to

control.

5.4.1 Simple y signal map from an N-body simulation

The Compton y parameter depends on the electron temperature Te(r) and number density

ne(r) as functions of spatial position r, whereas an N -body simulation provides masses and

positions of discrete dark matter particles grouped in halos. Let us recall the theoretical
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Figure 5.5: Average number of close neighbors in different tSZ SNR bins. It increases, confirming
that stronger tSZ signatures are associated with clusters that have more galaxies.
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expression for y as the integral along the line of sight (Planck Collaboration et al., 2016a;

Sunyaev & Zeldovich, 1972):

y(θ) =

∫ rls

0

kBTe(r,θ)

mec2
ne(r,θ)σTdr. (5.5)

The integral above is taken along the radial coordinate r to the last scattering surface rls,

where CMB emerges. kB is the Boltzmann’s constant, mec
2 is the electron’s rest energy and

σT is the Thomson cross-section.

We estimate electron temperatures Te using the motions of dark matter particles in halos.

The root-mean-square thermal velocity is analogous to the random velocity dispersion of

particles. The velocity dispersion of dark matter particles belonging to each halo is available

in the AbacusSummit CompaSO halo catalogs. The remaining non-trivial step is connecting

dark matter to hot gas. We assume complete ionization, primordial composition5, and thermal

equilibrium between ions and electrons in the gas. We find adequate hot gas temperatures6 by

taking the same kinetic energy of random motions per unit mass as for dark matter particles.

Then, we approximately compute the number of electrons Ne from the dark matter mass.

First, we obtain the baryonic matter mass using the global baryon-to-dark matter ratio

given by the cosmic density parameters Ωb/Ωcdm. Second, we estimate the hot gas mass by

assuming it constitutes a constant fraction of all baryons fhot ≈ 0.85. Finally, we compute the

electron number Ne assuming complete ionization of the hot gas and primordial composition

as previously.

For simplicity, we use the flat-sky approximation valid for small angular scales. Accordingly,

we switch from r = (r,θ) decomposition to
(
r∥, r⊥

)
:

y(r⊥) ≈
kBσT
mec2

∫ rmax

0
Te

(
r∥, r⊥

)
ne

(
r∥, r⊥

)
dr∥. (5.6)

Next, we need to account for particle discreteness. As the first rough approximation, we

5I.e., mix of hydrogen-1 and helium-4 with the mass fraction of the latter YHe = 0.2454 (Planck Collaboration
et al., 2020c).

6The 3-dimensional velocity dispersion σ3d ∼ 200 km s−1 yields T ∼ 106 K.
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take infinitely narrow profiles of Te(r)ne(r) for each dark matter particle with the 3-dimensional

Dirac delta function δ(3):

y(r⊥) ≈
kBσT
mec2

∑

j

∫ rmax

0
Te,jNe,jδ

(3)(r − rj)dr∥. (5.7)

Here j indexes dark matter particles with positions rj and the corresponding electron temper-

ature and number estimates. We can evaluate the integral over r∥ by decomposing the delta

function in r∥ and r⊥
7:

y(r⊥) ≈
kBσT
mec2

∑

j

Te,jNe,jδ
(2)(r⊥ − r⊥,j). (5.8)

In the following step, we need to discretize the y map into pixels. We can do this by

averaging over pixel number k with area Ak:

yk =
1

Ak

∫

Ak

dr⊥y(r⊥). (5.9)

Substituting Equation (5.8) into the integral above gives counts of dark matter particles in

pixels weighted by their TeNe along with constant factors:

yk =
1

Ak

kBσT
mec2

∑

j: r⊥,j∈Ak

Te,jNe,j . (5.10)

Subsequently, we need to convolve the pixelated map with the point spread function (the

CMB instrument beam). We use fine pixels at this stage. The common beam for the ACT DR6

+ Planck map has a Gaussian shape with 1.6 arcmin full width at half-maximum (Coulton

et al., 2024). This translates to ≈ 0.9h−1Mpc at z = 0.8 — close to the typical halo size.

Thus, the exact width of the electron temperature-density profile is not so important.

Finally, we downsample the map to larger pixels, approximately matching the larger pixel

side of 0.5 arcmin in the ACT DR6 + Planck y map. Afterwards, we also apply a 2.4 arcmin

FWHM Gaussian filter analogously to our data processing.

7Namely, δ(3)(r − rj) = δ(1)
(
r∥ − r∥,j

)
δ(2)(r⊥ − r⊥,j). The integral of the former over dr∥ gives 1 as long

as r∥,j is not out of integration bounds.
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5.4.2 Simple noise model

First, we have tried to add noise independently for each galaxy. We have divided the pure

y signal produced in the previous section for every galaxy from a galaxy catalog by the y

standard deviation. We take that as the center of the total signal-to-noise ratio distribution.

We assume that the distribution is normal with a standard deviation of 1 (because the value is

already normalized by the y standard deviation). Then, we have computed the contribution of

each galaxy to each SNR bin by integrating each Gaussian within bin boundaries (this gives a

difference of error functions, which can be evaluated quickly in common libraries). However,

we have found that in this model, the clustering increase with SNR is much stronger than in

the data.

Therefore, we implemented realistic spatial correlations in the noise map. We have done

this by generating the noise (normalized by its pixel-wise standard deviations) according to

the power spectrum of a noise simulation provided with the ACT DR6 products (accordingly

normalized, and filtered8). We also produce a periodic square y standard deviation map, in

which the same values occupy the same fractions of the area as for ACT DR6 + Planck. To

obtain the total signal-to-noise ratio, we add the normalized noise to the ratio of the pure

signal to the standard deviation, all taken from the pixel to which a mock galaxy falls.

By construction, our final mock noise map is independent of the mock signal. This might

not be true in actual data processing (deprojection of different foregrounds) and may account

for some of the differences we notice later.

5.4.3 Calibration

To refine our arbitrary coefficients in the y signal making described above, we rescale the

signal to match the 3-dimensional density of > 4σ detections (cluster candidates) in the data

(0.4 < z < 0.85). This should be good as long as there is rarely more than one significant SZ

cluster per pixel. Otherwise, we would need to match depth with the real Universe, which

8We applied the filter after normalization by pixel-wise standard deviations (computed previously from
304 realizations of noise simulations). Filtering before normalization corresponds to the data processing more
exactly, but it creates small-scale artifacts at the boundaries of regions observed by ACT to different depths.
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would be challenging with cut-sky mocks as well, because it would require bigger simulation

boxes.

We match the 5711 peaks (> 4σ) detected in the ACT DR6 + Planck tSZ y map after

our fiducial filtering to the ACT DR5 SZ cluster catalog (Hilton et al., 2021) containing 4195

confirmed objects. Because of the differences in data and cluster candidate detection methods,

the matching is not 1-to-1. We restrict good matches to 2285 unique clusters within 2.4 arcmin

of our peaks, among which 1179 belong to our redshift range (0.4 < z < 0.85). Given the sky

area of the ACT DR5 cluster search mask, their average density is ≈ 40
(
h−1Gpc

)−3. From

this, we extrapolate the density of our > 4σ peaks as ≈ 100
(
h−1Gpc

)−3. We rescale the mock

y signal to match this density of > 4σ peaks in our first map (given that our simulation box is
(
2h−1Gpc

)3). The resulting signal rescaling factor is ≈ 1.14, which suggests that our rough

assumptions were not far off.

It is important to take noise into account in this calibration: without noise, we find the

rescaling factor ≈ 1.59. We do not assume that the noise distribution is asymmetric, but

higher signals are rarer9. Therefore, at a given final signal-to-noise10, more objects were shifted

“up” by noise (have a smaller true signal) than “down” (from a larger true signal).

5.4.4 Mock clustering

Bringing together all the ingredients, we can finally compare the clustering of SNR bins in

mocks to data. We focus on the larger scales, showing full cross-correlation functions in

Figure 5.6 and relative galaxy bias in Figure 5.7. We see a clustering/bias enhancement trend

generally similar to the data, although the increase appears to be slower near zero signal and

faster at high signal. As we mentioned before, one of the reasons for the difference may be the

independence of noise and signal in our mocks.

Our next step will be to investigate how the differences in the clustering of SNR bins react

9That said, true negative signals are not possible in our simplistic model, and are probably hard to achieve
in reality.

10At least a positive value.
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Figure 5.6: Mock large-scale cross-correlation function of different SNR bins with the full LRG
sample. Similarly to the data (Figure 5.1), the clustering is enhanced at higher SNR, but more slowly.
Also note that the [0, 1) σ bin remains very similar to the full sample.
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to changes in halo occupation distribution parameters. Doing this with all cross-correlation

functions (Figure 5.6) is hardly viable, because it would add even more lines to the plot,

making it hard to interpret. The relative bias plot (Figure 5.7) provides a cleaner way forward.

Currently, we do not focus on the small-scale line-of-sight clustering (analogs of Figures 5.3

and 5.4). One of the reasons is that we do not model fiber assignment in our cubic mocks for

simplicity. On large scales, the fiber assignment incompleteness effects can be mitigated quite

well with weights (Bianchi et al., 2024; DESI Collaboration et al., 2024a), but on small scales

it is a much more difficult problem.

5.4.5 Relating halo mass to thermal Sunyaev-Zeldovich signatures

Simulations also allow us to access the true halo properties, unlike the data. With this, we can

explore connections with SZ properties (bearing in mind they are produced approximately).

We present mock correlations between halo mass and the noiseless tSZ y signal (left) or

the final tSZ signal-to-noise ratio (right; both in their central pixels) in Figure 5.8. We count

halo contributions by their mass11 to minimize assumptions about the galaxy-halo connection.

When we have better constraints on the halo occupation distribution, we can count the number

of galaxies, which is non-linear in halo mass. We see a wide range of tSZ observables for

smaller halo masses, but the most massive halos can be identified with the highest signal

or signal-to-noise. Furthermore, the noiseless signal might have a power-law relation with

halo mass, whereas the smearing towards smaller halo masses might be caused by such halos

appearing in the same lines of sight as larger halos (within the point spread function).

A well-known or calibrated halo mass to tSZ observables relation can be used to make

theoretical predictions about clustering, particularly on larger scales. Furthermore, if this

relation is less dependent on cosmology than halo mass-density relations, it would enable more

robust cosmological inference beyond the 2-point function.

Alternatively, it is possible to build a simulation-based model after investing in a large

number of high-quality mocks (like for density-split clustering in Cuesta-Lazaro et al., 2024).

11In numbers, small halos strongly dominate, making such plots less informative in our opinion.
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Figure 5.8: Histograms displaying correlations between halo mass and tSZ quantities in the corre-
sponding pixels in our mock map. Left: noiseless y parameter. Right: SNR including our simplistic
noise. Histograms are weighted by halo mass to minimize dependence on galaxy-halo connection
assumptions.

This is a long way from our toy model. More generally, we are concerned about robustness,

whether one can simulate SZ from first principles well enough.

5.5 Conclusions

We demonstrate that there is valuable cosmological information in the thermal Sunyaev-

Zeldovich (tSZ) map in the “noise” beyond the individual cluster candidates. Soon, we aim to

quantify the sensitivity of our effects to the galaxy-halo connection using the halo simulations.

In further work, we are going to investigate constraining the growth of structure.

From large-scale clustering, we find that a higher tSZ signal-to-noise ratio corresponds

to galaxies with a higher bias (Figure 5.2). This can allow us to select luminous red galaxy

sub-samples and test their structural consistency (e.g., following Patej & Eisenstein, 2016), or

better understand their biases to better constrain primordial non-Gaussianity (in the spirit of

Sullivan et al., 2023).

From small-scale line-of-sight clustering, we find that the velocity dispersion increases

considerably with tSZ SNR (Figure 5.4). This is likely a clean indication of strong non-

perturbative non-linearities (Fingers of God) which can be removed to improve the theoretical

153



modeling (Baleato Lizancos et al., 2025).

We also see that galaxies with higher SNR bins have higher numbers of close neighbors

(Figure 5.5). This could help inform the galaxy multiplet studies (e.g. Lamman et al., 2024).

We have built a simple mock tSZ map that allowed us to reproduce general trends from

the data (Figures 5.6 and 5.7). However, we note differences, and investigating their causes

will be our next priority.

Eventually, we hope to use a relatively small number of simulations to calibrate the relation

between the halo mass and the Sunyaev-Zeldovich observables and build a semi-analytical

model of galaxy subsample clustering. Alternatively, one can invest in a large number of

accurate simulations with different cosmological and galaxy-halo connection parameters to

build a simulation-based model or inference pipeline like for density-split (Cuesta-Lazaro et al.,

2024) or density-marked clustering (Massara et al., 2024).

Combining 3D galaxy surveys and Sunyaev-Zeldovich data is very promising. As well

as the number of spectra with DESI, the SZ measurements are improving rapidly with the

current and next CMB experiments like Simons Observatory (Ade et al., 2019) and CMB-S4

(Abazajian et al., 2019; Carlstrom et al., 2019). Joint analysis of different measurements has

high potential to improve our measurements and uncover new tensions.
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Chapter 6

Conclusions and outlook

Galaxy redshift surveys will remain a powerful cosmological probe in the near future. Among

the key analyses of DESI DR2 (DESI Collaboration et al., 2026), only the BAO (DESI

Collaboration et al., 2025b,a) have been finished, many others are ongoing. The products of

the originally planned 5 years of observations could become available to the DESI collaboration

next year. The plans beyond that include the upgraded DESI-2 and the next-generation

Stage V instrument (Schlegel et al., 2022). Besides DESI, the Euclid space telescope (Euclid

Collaboration et al., 2024) is already collecting data, and we hope to see quality spectroscopic

products soon. The Roman Space Telescope (also known as the Wide-Field Infrared Survey

Telescope and the Joint Dark Energy Mission Akeson et al., 2019) should be launched into

space soon.

A major part of this thesis (Chapter 2) was dedicated to the development of fast and

reliable semi-analytical covariance matrices for 2-point correlation functions of cosmological

point tracers. This approach is much cheaper (both in computing and human time resources)

and more flexible than relying on sample variations in large suites of approximate simulations.

Accordingly, it enabled or enhanced many tests of the galaxy and quasar BAO methodology

for DESI DR1 (DESI Collaboration et al., 2025f), and then considerably streamlined and sped

up the DR2 BAO analysis (Andrade et al., 2025a; DESI Collaboration et al., 2025a). We

are looking to further applications of the particular and more generic experience, besides the
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reiteration for the upcoming DESI Y3 BAO.

Our first natural interest is the adjacent full-shape galaxy clustering analysis (e.g, DESI

Collaboration et al., 2024b). It considers more aspects than only the scale of the BAO

feature, including redshift-space distortions and signals from the matter-radiation equality

scale. Accordingly, this analysis informs us much better about the growth of cosmic structure,

regulated by the nature of dark matter and gravity.

The advantages come with challenges, such as higher-dimensional data vectors and accord-

ingly covariance matrices (harder to estimate), and the need for more precise non-linear models

with more parameters and more degeneracies between them. The future analysis of DR2 will

likely include correlation functions or higher-point statistics to help break such degeneracies.

It may be feasible to extend the covariance framework for these cases (similarly to Philcox &

Eisenstein, 2019). We have already suggested a way to correct the simulation-based covariance

for power spectra for the 2024 full-shape analysis (DESI Collaboration et al., 2024b,a) using

the RascalC semi-analytical covariance matrices.

The official DESI DR1 full-shape analysis (DESI Collaboration et al., 2024b) has been

conducted in Fourier space (power spectra instead of correlation functions). We understand it

was motivated by concerns that the precision of the modeling, naturally conducted in Fourier

space (Maus et al., 2025a), may be partially lost in the Fourier transformation. However,

Ramirez-Solano et al. (2025) reported a high quality of configuration-space (correlation function)

modeling and analysis.

DESI Collaboration et al. (2024b) also combined the DR1 BAO post-reconstruction results

(DESI Collaboration et al., 2025f) with full-shape power spectra, estimating their covariance

via mocks. Analytical or semi-analytical covariance between the reconstructed correlation

function and pre-reconstruction power spectrum would be beneficial, but it is very challenging.

It might be feasible to compute the covariance between pre- and post-reconstruction correlation

functions similarly to Section 2.2.3. Additionally, we may improve the early implementation of

the RascalC covariance between modified1 power spectra and correlation functions (Philcox

1The difference from the conventional power spectra should be small at small scales.

157



& Eisenstein, 2020b).

Our results also include a generic covariance matrix validation strategy, not specific to the

numeric methods. In Sections 2.3.1 and 2.3.3 we have developed a brief, quantitative, and

statistically interpretable framework for comparison with simulation-based covariances. These

methods can be applied to a wide variety of observables besides correlation functions, from

galaxy power spectra to CMB instrumental noise.

Higher-point statistics could also be used in future DESI measurements of primordial

non-Gaussianity (building upon the completed analysis of DR1 by Chaussidon et al., 2024).

The dimensionality of the data vector grows fast with the number of points, and simulation-

based covariances then require proportionally more mock realizations. The semi-analytical

covariances can help to maintain high accuracy at low computation cost.

Another promising direction is the joint analysis of multiple distinct galaxy types — different

tracers of the large-scale structure. In DESI, several target types overlap in volume, most

notably Luminous Red Galaxies (LRG, Zhou et al., 2023) with Emission Line Galaxies (ELG,

Raichoor et al., 2023) in the redshift range 0.8 < z < 1.1, and ELG with quasars (Chaussidon

et al., 2023) in 1.1 < z < 1.6. Additionally, the Bright Galaxy Survey (Hahn et al., 2023)

includes a wide variety of objects and can be separated into multiple sub-types, e.g., red and

blue. Cross-correlations of different galaxies can break parameter degeneracies and effectively

increase the measurement precision. They can also serve as a consistency check to ensure

the different samples reflect the same underlying structure (e.g., following Patej & Eisenstein,

2016), with the potential to uncover new cosmological tensions.

If the overlapping tracers are analyzed completely separately, valuable information from

their cross-correlation remains unused. Moreover, the two samples are not independent

but correlated to some degree, which needs to be quantified. The full analysis requires

high-dimensional covariance matrices between all the auto-correlation and cross-correlation

functions, and our semi-analytical framework provides them (in Section A.1). We have

contributed a study of the optimal combination of DESI DR1 LRG and ELG into a single

combined tracer (Valcin et al., 2025), which has been used for the 2024 BAO measurements
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(DESI Collaboration et al., 2025f).

Our work on the DESI DR1 and DR2 BAO measurements empowered very intriguing

cosmological findings (DESI Collaboration et al., 2025e,a). We summarized some of them in

Chapter 3, focusing on dynamic dark energy and Hubble tension (which is not resolved by

the dynamic dark energy preferred by DESI). This motivates us to become more involved in

building and testing cosmological models capable of explaining either or both.

We summarized our earlier exploration of a promising Hubble tension relief in Chapter 4.

It was a follow-up on the idea of small-scale baryon clumping at recombination (Jedamzik &

Pogosian, 2020), possibly induced by primordial magnetic fields (Jedamzik & Abel, 2011, 2013;

Jedamzik & Saveliev, 2019), which gives a higher value of the Hubble constant from CMB even

without new physics, and reduces the S8 tension. Whereas alternative recombination does

not require fundamentally new physics, quantifying the uncertainty in known effects is also

crucially important. We conducted a detailed follow-up study with a more flexible and general

model for inhomogeneous recombination. We determined that with data available at the

time, the preference for the effect depends significantly on the assumed a priori distributions

for clumping parameters, the amount of external Hubble constant measurements, and the

inclusion of additional probes like BAO (a conclusion similar to Jedamzik et al., 2021). We

found that the strongest constraints on alternative recombination come from high multipoles

of the CMB power spectrum, the “tail” affected by Silk damping. We showed that the future

CMB experiments, Simons Observatory (Ade et al., 2019) and CMB-S4 (Abazajian et al., 2019;

Carlstrom et al., 2019), will give decisive evidence for or against clumpy recombination. It may

be interesting to revisit the idea with the newest measurements, although some other groups

have been working on alternative recombination more actively (e.g., Lynch et al., 2024a).

Synergies between advanced CMB and galaxy redshift samples are very promising. For

example, joint analysis of CMB lensing with DESI galaxies has given tighter constraints on the

growth of cosmic structure (Kim et al., 2024; Sailer et al., 2024) and primordial non-Gaussianity

(Krolewski et al., 2024; Bermejo-Climent et al., 2024). As well as the number of spectra with

DESI, the measurements of secondary CMB anisotropies are improving rapidly with the
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current and next CMB experiments (Qu et al., 2024; Coulton et al., 2024; Ade et al., 2019;

Abazajian et al., 2019; Carlstrom et al., 2019). Joint analysis of different measurements has

high potential to improve precision, provide valuable information on standing tensions, and

discover new discrepancies.

In Chapter 5 we are investigating new techniques using thermal Sunyaev-Zeldovich (tSZ)

data instead. This work is partially inspired by known ideas for leveraging information

from different environments: density-split (e.g. Paillas et al., 2023) and density-marked (e.g.

White, 2016) clustering, which deliver tighter cosmological constraints than the conventional

2-point correlation functions or power spectra. Strong tSZ signals are associated with distinct

environments — large galaxy clusters. We are grouping DESI luminous red galaxies (Zhou et al.,

2023) by the signal-to-noise ratio in the tSZ y parameter map. We find that with increasing tSZ

signal-to-noise, there are significant increases in large-scale galaxy bias (allowing multi-tracer

benefits discussed above), the velocity dispersion (allowing Finger-of-God mitigation for more

precise and robust modeling, e.g. Baleato Lizancos et al., 2025) and the number of neighbors

(which could help inform the galaxy multiplet studies, e.g. Lamman et al., 2024).

Thus, we demonstrate that there is valuable cosmological information in the tSZ map

beyond the individual clusters. We hope our preliminary findings are sufficient to draw

attention to the topic. We are going to continue developing the adjacent analysis techniques

and encourage others to join us.
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Appendix A

Appendix to the covariance matrices

(Chapter 2)

A.1 Estimators for multi-tracer covariance matrices

In this section, we provide the generalized multi-tracer expressions for reference. We have not

endeavored to validate them in this work because in the EZmocks suite, different tracers have

mostly been made from boxes at different redshifts. We expect that the shift of the galaxies’

positions with time will not allow self-consistent cross-correlations in such circumstances. DESI

has primarily focused on the LRG and ELG overlap in z = 0.8− 1.1 bin (Valcin et al., 2025),

but EZmocks for these tracers have been made from box snapshots at redshifts 1.1 and 0.95,

respectively.

We add one capital Latin superscript to all the overdensities to signify the tracer involved

(e.g. δXi ). For counts, it is two letters accordingly (e.g. NXNY ).

A.1.1 Angular bins

The Landy-Szalay estimator for the multi-tracer correlation function is

(
ξ̂XY

)c
a
=

(
NXNY

)c
a

(RXRY )ca
. (A.1)
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We make the following shorthand for the multi-tracer covariance:

(
CXY,ZW

)cd
ab

≡ cov

[(
ξ̂XY

)c
a
,
(
ξ̂ZW

)d
b

]
. (A.2)

It is important to note that the shot-noise approximation works only for the same-tracer

overdensities:
(
δXi
)2 ≈ αX

SN

nX
i

(
1 + δXi

)
. (A.3)

The full multi-tracer expression for the model covariance is from Philcox et al. (2020) but

with some changes in notation:

(
C̃XY,ZW

)cd
ab
(αSN) =

(
4CXY,ZW

)cd
ab

+
αX
SN

4

[
δXW

(
3CX,Y Z

)cd
ab

+ δXZ
(
3CX,YW

)cd
ab

]
(A.4)

+
αY
SN

4

[
δYW

(
3CY,XZ

)cd
ab

+ δY Z
(
3CY,XW

)cd
ab

]

+
αX
SNα

Y
SN

2

[
δXW δY Z + δXZδYW

](
2CXY

)cd
ab

with

(
4CXY,ZW

)cd
ab

=
1

(RXRY )ca(R
ZRW )db

∑

i̸=j ̸=k ̸=l

nX
i nY

j n
Z
k n

W
l wX

i wY
j w

Z
k w

W
l Θa(rij) (A.5)

×Θc(µij)Θ
b(rkl)Θ

d(µkl)
[
������
η
(c),XYWZ
ijkl + ξXZ

ik ξYW
jl + ξXW

il ξY Z
jk

]

(
3CY,XZ

)cd
ab

=
4

(RXRY )ca(R
Y RZ)db

∑

i̸=j ̸=k

nX
i nY

j n
Z
k w

X
i

(
wY
j

)2
wZ
k Θ

a(rij)Θ
c(µij)

×Θb(rjk)Θ
d(µjk)

[
�

��ζXY Z
ijk + ξXZ

ik

]

(
2CXY

)cd
ab

=
2δabδcd

(RXRY )ca(R
XRY )db

∑

i̸=j

nX
i nY

j

(
wX
i wY

j

)2
Θa(rij)Θ

c(µij)
[
1 + ξXY

ij

]
,

where δXY , δab and δcd are Kronecker deltas; ξXY
ij = ξXY (rij , µij) is the 2PCF of tracers X

and Y evaluated at the separation between points number i and j (in practice the value is

obtained by bicubic interpolation from the input grid of correlation function values).

Analogously, ζXY Z
ijk and η

(c),XY ZW
ijkl are the 3-point and connected 4-point correlation

functions of the tracers listed in the superscript evaluated at the separations between i, j, k

and i, j, k, l points, respectively. These non-Gaussian higher-point functions are included for

173



completeness but dropped in practice, we reflected this by crossing them out in the expressions.

The expressions for multi-tracer jackknife covariance can be constructed similarly. However,

to the best of our knowledge, only the single-tracer jackknife auto-covariances have been

used in practice. The shot-noise rescaling values have been tuned on each tracer separately.

Therefore, the computation of the jackknife model for the other blocks of the full matrix has

been unnecessary; the single-tracer expressions are sufficient.

A.1.2 Projected Legendre

Note that the Legendre projection factors (Equation (2.18)) are the same for all tracers.

Accordingly, the multi-tracer covariance is still projected linearly from the angularly binned

one:
(
C̃XY,ZW

)ℓℓ′
ab

≡ cov

[(
ξ̂XY

)ℓ
a
,
(
ξ̂ZW

)ℓ′
b

]
=
∑

c,d

(
C̃XY,ZW

)cd
ab
F ℓ
cF

ℓ′
d . (A.6)

Therefore the full covariance model is constructed analogously to Equation (A.4):

(
CXY,ZW

)ℓℓ′
ab

=
(
4CXY,ZW

)ℓℓ′
ab

+
αX
SN

4

[
δXW

(
3CX,Y Z

)ℓℓ′
ab

+ δXZ
(
3CX,YW

)ℓℓ′
ab

]
(A.7)

+
αY
SN

4

[
δYW

(
3CY,XZ

)ℓℓ′
ab

+ δY Z
(
3CY,XW

)ℓℓ′
ab

]

+
αX
SNα

Y
SN

2

(
δXW δY Z + δXZδYW

)(
2CXY

)ℓℓ′
ab
.

with the following terms (similar to Equation (2.20)):

(
4CXY,ZW

)ℓℓ′
ab

=
∑

i̸=j ̸=k ̸=l

nX
i nY

j n
Z
k n

W
l wX

i wY
j w

Z
k w

W
l Θa(rij)Θ

b(rkl) (A.8)

×
[
������
η
(c),XYWZ
ijkl + 2ξXZ

ik ξYW
jl

]∑

c

Θc(µij)F
ℓ
c

(RXRY )ca

∑

d

Θd(µkl)F
ℓ′
d

(RZRW )db
,

(
3CY,XZ

)ℓℓ′
ab

= 4
∑

i̸=j ̸=k

nX
i nY

j n
Z
k w

X
i

(
wY
j

)2
wZ
k Θ

a(rij)Θ
b(rjk)

[
���ζXY Z
ijk + ξXZ

ik

]

×
∑

c

Θc(µij)F
ℓ
c

(RXRY )ca

∑

d

Θd(µjk)F
ℓ′
d

(RY RZ)db
,

(
2CXY

)ℓℓ′
ab

= 2δab
∑

i̸=j

nX
i nY

j

(
wX
i wY

j

)2
Θa(rij)

[
1 + ξXY

ij

]∑

c

Θc(µij)F
ℓ
cF

ℓ′
c[

(RXRY )ca
]2 .
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The multi-tracer covariance model for Legendre multipoles of the 2PCF is implemented

in the code and has been employed for overlapping tracers’ cross-correlation in Valcin et al.

(2025). We omit the corresponding jackknife expressions as they have not been used.

A.2 Statistics of comparison metrics for noisy sample covariance

matrix

Here we provide derivations of the expectation values for comparison metrics between a noisy

sample covariance and the true covariance/precision matrix. This is useful for testing how

close RascalC results are to the latter.

A.2.1 KL divergence mean and variance

A more generic setup – two sample covariance matrices based on draws from a multivariate

normal distribution – has been considered in Appendix D of Philcox et al. (2020). However,

the derivation was limited to the expectation value of the KL divergence between them, and we

have not been able to find a reference about the metric’s scatter around the mean (variance or

standard deviation). In addition, we believe the final result there is slightly incorrect, namely

1 should be subtracted from the number of samples. This is because for the estimate of sample

covariance commonly used with mocks

Xab =
1

nS − 1

nS∑

i=1

(xa,i − x̄a)(xb,i − x̄b) (A.9)

the mean is not known beforehand but estimated from the sample as well: x̄a ≡ 1
nS

∑nS
i=1 xa,i.

This reduces the number of degrees of freedom by one. Then the covariance of the sample

covariance matrix elements is

cov(Xab, Xcd) =
C0,acC0,bd + C0,adC0,bc

nS − 1
(A.10)

instead of

cov(Xab, Xcd) =
C0,acC0,bd + C0,adC0,bc

nS
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as in Philcox et al. (2020). C0 is the true underlying covariance matrix of the Gaussian

distribution the samples are drawn from. The sample covariance estimate is unbiased, meaning

that the expectation value is the true covariance: ⟨X⟩ = C0. Then, considering two sample

covariance matrices Xi obtained from n
(i)
S samples each, decomposing them as Xi = C0 + δXi,

Taylor expanding and only leaving the leading nontrivial (quadratic) order in δXi, we obtain

〈
DKL

(
X−1

1 ,X2

)〉
≈ Nbins(Nbins + 1)

4

(
1

n
(1)
S − 1

+
1

n
(2)
S − 1

)
(A.11)

instead of
〈
DKL

(
X−1

1 ,X2

)〉
≈ Nbins(Nbins + 1)

4

(
1

n
(1)
S

+
1

n
(2)
S

)

as in Philcox et al. (2020).

Since in this work we only consider one sample covariance matrix, while the RascalC

results are not expected to follow the Wishart distribution, the more relevant result is for the

true precision matrix Ψ0:

⟨DKL(Ψ0,X)⟩ ≈ Nbins(Nbins + 1)

4(nS − 1)
, (A.12)

which can be obtained from Equation (A.11) by setting the first number of samples to infinity,

reducing the noise in X−1
1 to zero.

For the further derivations, it is convenient to “normalize” the covariance. Let us take

yi = Ψ
1/2
0 xi, (A.13)

where Ψ
1/2
0 means the matrix square root of Ψ0 – a matrix with the same eigenvectors and

eigenvalues equal to the square roots of corresponding eigenvalues of the original matrix. Then

cov(ya,i, yb,j) = δijδab. (A.14)

Let us also introduce ȳa ≡ 1
nS

∑nS
i=1 ya,i, define δya,i ≡ ya,i− ȳa (so that ⟨δya,i⟩ = 0) and finally

compute the “normalized” covariance matrix:

Yab ≡
1

nS − 1

nS∑

i=1

δya,iδyb,i. (A.15)
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Then also

Y = Ψ
1/2
0 XΨ

1/2
0 . (A.16)

Let us compute

cov(δya,i, δyb,j) = ⟨δya,iδyb,j⟩ = δijδab − 2× 1

nS
δab + nS × 1

n2
S

δab =

(
δij − 1

nS

)
δab. (A.17)

As a consequence, ⟨Y⟩ = I, and we can expand

Y = I+ δY (A.18)

while ⟨δY⟩ = 0. Also,

cov(Yab, Ycd) = ⟨δYabδYcd⟩ =
δacδbd + δadδbc

nS − 1
. (A.19)

Now let us expand the KL divergence using the “normalized” covariance matrix, starting from

2DKL(Ψ0,X) = tr (Ψ0X)−Nbins − ln det (Ψ0X), (A.20)

we can write Ψ0 = Ψ
1/2
0 Ψ

1/2
0 , use the cyclic property of trace and determinant to arrive to

2DKL(Ψ0,X) = tr (Y)−Nbins − ln det (Y), (A.21)

remembering Equation (A.16). Then we expand in δY (Equation (A.18)):

2DKL(Ψ0,X) = tr (δY)− ln det (I+ δY). (A.22)

Now using ln det{A} = tr lnA and expanding the second term in Taylor series up to quadratic

order in δY we obtain

2DKL(Ψ0,X) ≈ 1

2
tr
[
(δY)2

]
=

1

2

Nbins∑

a,b=1

δYabδYab. (A.23)

Taking the expectation value of Equation (A.23) and using Equation (A.19), one can re-derive
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Equation (A.12). We will proceed to compute the variance:

Var
{
tr
[
(δY)2

]}
=

〈(
tr
[
(δY)2

])2〉
−
〈
tr
[
(δY)2

]〉2

=

Nbins∑

a,b,c,d=1

[⟨δYabδYabδYcdδYcd⟩ − ⟨δYabδYab⟩ ⟨δYcdδYcd⟩]. (A.24)

Full expansion gives

YabYabYcdYcd =
1

(nS − 1)4

nS∑

i,j,k,l=1

δya,iδyb,iδya,jδyb,jδyc,kδyd,kδyc,lδyd,l. (A.25)

δy are normally distributed and have zero means, so for them, we can use Wick’s theorem to

split this into all possible pairs. (δY also has zero mean, but not a Gaussian distribution; this

is why we need to go to a deeper level.) The total number of pairs is 8!/(4!× 24) = 105, so

it is easy to go over them in a computer program. Additionally, it is useful to check which

ones are similar. It is apparent that the following five index permutations leave the expression

unchanged: a ↔ b, c ↔ d, i ↔ j, k ↔ l and (a, b, i, j) ↔ (c, d, k, l). Finally, some of the pairs

will not contribute to variance and can be excluded: contraction of a pair inside the same Y

contribute to ⟨Y ⟩ = I and must be subtracted; and if all the contracted pairs correspond to

Y ’s with the same indices, that contributes to the mean of DKL and has to be subtracted too.

We find there are 56 pair assignments contributing to ≈ 16(nS − 1)4Var[DKL(Ψ0, X)], but

no more than 8 of them are distinct after using symmetries:

8

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδya,j⟩ ⟨δyb,iδyc,k⟩ ⟨δyb,jδyc,l⟩ ⟨δyd,kδyd,l⟩ =

8

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δij − 1

nS

)(
δik − 1

nS

)
δbc
(
δjl − 1

nS

)
δbc
(
δkl − 1

nS

)
=

8N3
bins(nS − 1) (A.26)
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16

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδya,j⟩ ⟨δyb,iδyc,k⟩ ⟨δyb,jδyd,l⟩ ⟨δyd,kδyc,l⟩ =

16

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δij − 1

nS

)(
δik − 1

nS

)
δbc
(
δjl − 1

nS

)
δbd
(
δkl − 1

nS

)
δdc =

16N2
bins(nS − 1) (A.27)

8

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδyb,j⟩ ⟨δyb,iδyc,k⟩ ⟨δya,jδyd,l⟩ ⟨δyd,kδyc,l⟩ =

8

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δij − 1

nS

)
δab
(
δik − 1

nS

)
δbc
(
δjl − 1

nS

)
δad
(
δkl − 1

nS

)
δcd =

8Nbins(nS − 1) (A.28)

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδyc,k⟩ ⟨δyb,iδyd,k⟩ ⟨δya,jδyc,l⟩ ⟨δyb,jδyd,l⟩ =

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δik − 1

nS

)
δac
(
δik − 1

nS

)
δbd
(
δjl − 1

nS

)
δac
(
δjl − 1

nS

)
δbd =

4N2
bins(nS − 1)2 (A.29)

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδyc,k⟩ ⟨δyb,iδyd,k⟩ ⟨δya,jδyd,l⟩ ⟨δyb,jδyc,l⟩ =

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δik − 1

nS

)
δac
(
δik − 1

nS

)
δbd
(
δjl − 1

nS

)
δad
(
δjl − 1

nS

)
δbc =

4Nbins(nS − 1)2 (A.30)

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδyc,k⟩ ⟨δyb,iδyc,l⟩ ⟨δya,jδyd,k⟩ ⟨δyb,jδyd,l⟩ =

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δik − 1

nS

)
δac
(
δil − 1

nS

)
δbc
(
δjk − 1

nS

)
δad
(
δjl − 1

nS

)
δbd =

4Nbins(nS − 1) (A.31)
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8

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδyc,k⟩ ⟨δyb,iδyc,l⟩ ⟨δya,jδyd,l⟩ ⟨δyb,jδyd,k⟩ =

8

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δik − 1

nS

)
δac
(
δil − 1

nS

)
δbc
(
δjl − 1

nS

)
δad
(
δjk − 1

nS

)
δbd =

8Nbins(nS − 1) (A.32)

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

⟨δya,iδyc,k⟩ ⟨δyb,iδyd,l⟩ ⟨δya,jδyc,l⟩ ⟨δyb,jδyd,k⟩ =

4

Nbins∑

a,b,c,d=1

nS∑

i,j,k,l=1

(
δik − 1

nS

)
δac
(
δil − 1

nS

)
δbd
(
δjl − 1

nS

)
δac
(
δjk − 1

nS

)
δbd =

4N2
bins(nS − 1) (A.33)

Gathering all together gives

Var
{
tr
[
(δY)2

]}
≈ 4Nbins

(nS − 1)3
[2N2

bins + 4Nbins + 4 + (Nbins + 1)nS ]

=
4Nbins

(nS − 1)3
[(Nbins + 1)(nS + 2Nbins + 2) + 2]. (A.34)

Then, according to Equation (A.23), the variance of the KL divergence is approximately

16 times smaller:

Var[DKL(Ψ0,X)] ≈ Nbins[(Nbins + 1)(nS + 2Nbins + 2) + 2]

4(nS − 1)3
. (A.35)

This is an approximation because in Equation (A.23) the Taylor expansion was truncated at

the quadratic order in δY. Other derivation steps are exact.

A.2.2 Inverse test

We considered how different χ2 would result from one matrix compared to the other. If u is an

unit vector in Nbins-dimensional space (uTu = 1), then w = C
1/2
2 u gives an unit χ2 according

to C2: wTC−1
2 w = 1. Here C

1/2
2 means the matrix square root of C2 – a matrix with the

same eigenvectors and eigenvalues equal to the square roots of corresponding eigenvalues of

the original matrix. Then we consider the χ2 with respect to C1 (Ψ1): wTΨ1w and subtract
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the expected value of 1:

wTΨ1w − 1 = uT
[
C

1/2
2 Ψ1C

1/2
2 − I

]
u. (A.36)

Taking the RMS over all directions of u, one arrives at the RMS eigenvalue of this matrix,

which can be expressed through the Frobenius norm:

Rinv(Ψ1,C2) =
1√
Nbins

∣∣∣
∣∣∣C1/2

2 Ψ1C
1/2
2 − I

∣∣∣
∣∣∣
F
. (A.37)

The Frobenius norm can be recast as a trace and simplified further using its cyclic property:

∣∣∣
∣∣∣C1/2

2 Ψ1C
1/2
2 − I

∣∣∣
∣∣∣
F
=tr

[(
C

1/2
2 Ψ1C

1/2
2 − I

)T(
C

1/2
2 Ψ1C

1/2
2 − I

)]

=tr

[(
C

1/2
2 Ψ1C

1/2
2 − I

)2]

=tr
(
C

1/2
2 Ψ1C2Ψ1C

1/2
2 − 2C

1/2
2 Ψ1C

1/2
2 + I

)

=tr (Ψ1C2Ψ1C2 − 2Ψ1C2 + I) = tr tr
[
(Ψ1C2 − I)2

]
. (A.38)

This allows us to compute the quantity as

Rinv(Ψ1,C2) =

√√√√tr
[
(Ψ1C2 − I)2

]

Nbins
, (A.39)

which is more computationally robust – it is better to avoid factorizing (and inverting)

covariance matrices (especially the sample one) when possible.

It is notable that this metric is related to the discriminant matrix

P =
√

ΨR
T
CS

√
ΨR − I, (A.40)

where
√
ΨR is the lower Cholesky decomposition, used in Philcox et al. (2020); Philcox &

Eisenstein (2019). Through a similar procedure, one can find that its Frobenius norm is the

same as above:

||P||2F = tr
[
(Ψ1C2 − I)2

]
. (A.41)

However, the interpretation of elements of the discriminant matrix is less clear.
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Now let us consider the square of this metric (to remove the root):

R2
inv(Ψ0,X) =

1

Nbins
tr[Ψ0XΨ0X − 2Ψ0X + I]. (A.42)

Remembering Equation (A.16), we arrive to

R2
inv(Ψ0,X) =

1

Nbins
tr
[
Y2 − 2Y + I

]
. (A.43)

Furthermore, expanding in δY (according to Equation (A.18)), we get

R2
inv(Ψ0,X) =

1

Nbins
tr
[
(δY)2

]
, (A.44)

which is similar to Equation (A.23) up to a constant factor of 1/Nbins and lack of approximations.

We can obtain the expectation value by plugging in Equation (A.19):

〈
R2

inv(Ψ0,X)
〉
=

Nbins + 1

nS − 1
. (A.45)

For variance we can use Equation (A.34):

Var
[
R2

inv(Ψ0,X)
]
=

4[(Nbins + 1)(nS + 2Nbins + 2) + 2]

Nbins(nS − 1)3
. (A.46)

Assuming Var
[
R2

inv(Ψ0,X)
]
≪
〈
R2

inv(Ψ0,X)
〉2, we can take the square root to estimate the

mean and variance of not-squared metric as

⟨Rinv(Ψ0,X)⟩ ≈
√〈

R2
inv(Ψ0,X)

〉
=

√
Nbins + 1

nS − 1
, (A.47)

Var [Rinv(Ψ0,X)] ≈Var
[
R2

inv(Ψ0,X)
]

4
〈
R2

inv(Ψ0,X)
〉 =

(Nbins + 1)(nS + 2Nbins + 2) + 2

Nbins(Nbins + 1)(nS − 1)2
. (A.48)

Also, it is useful to note that Rinv is related to the χ2 approximation of minus log-likelihood,

considering the covariance of all covariance matrix elements. This is rather easy to see with

δY expression (Equation (A.44)). Since δY is real and symmetric, we obtain

Nbins ×R2
inv(Ψ0,X) = ||δY||2F =

Nbins∑

a,b=1

(δYab)
2. (A.49)

From Equation (A.19) we conclude that distinct elements of Y matrix have zero covariance

(excluding the pairs symmetric with respect to the diagonal), its diagonal elements have a
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variance of 2/(nS − 1) and off-diagonal elements have a variance of 1/(nS − 1). Then this

covariance is trivial to invert, and we have to sum the squares of the deviation of independent

elements divided by their variance to get the χ2:

χ2 =(nS − 1)

[
1

2

Nbins∑

a=1

(δYaa)
2 +

Nbins∑

a=1

Nbins∑

b=a+1

(δYab)
2

]

=
nS − 1

2

Nbins∑

a,b=1

(δYab)
2 =

(nS − 1)Nbins

2
×R2

inv(Ψ0,X). (A.50)

Since elements of Y are independent linear combinations of elements of sample covariance

matrix X (via Equation (A.16), since Ψ0 is not degenerate), the same holds for X, but a direct

computation without the “rotation” into Y would be significantly longer as the covariance of

Xab elements (Equation (A.10)) has a more generic and complex structure.

A.2.3 Mean chi-squared

We consider the sum of χ2 associated with the deviation of data vectors in individual samples

from the estimate of the average:

nS∑

i=1

Nbins∑

a,b=1

(xa,i − x̄a)Ψ0,ab(xb,i − x̄b) = (nS − 1)

Nbins∑

a,b=1

Ψ0,abXab = (nS − 1) tr(Ψ0X). (A.51)

Remembering Equation (A.13), we can rewrite the LHS as

nS∑

i=1

Nbins∑

a,b=1

(ya,i− ȳa)δab(yb,i− ȳb) =

Nbins∑

a=1

nS∑

i=1

(ya,i− ȳa)
2 ∼

Nbins∑

a=1

χ2(nS−1) ∼ χ2[Nbins× (nS−1)].

(A.52)

Therefore, the corresponding reduced χ2 is

χ2
red =

1

Nbins
tr (Ψ0X). (A.53)

A.2.4 Validation of means and standard deviations

To check the theoretical results from the previous sections, we have performed a quick Monte-

Carlo validation. 10,000 batches of 999 samples having 45 bins each have been generated. For

simplicity, we have taken the true covariance and precision to be unity matrices C0 = Ψ0 = I.

183



DKL(Ψ0, X) Rinv(Ψ0, X) χ2
red(Ψ0, X)

Measurement space Theoretical 0.519± 0.024 0.2147± 0.0049 1.0000± 0.0067
(45 bins) Sampled 0.526± 0.023 0.2146± 0.0050 1.0000± 0.0067

Parameter space Theoretical 0.0075± 0.0028 0.078± 0.014 1.000± 0.020
(5 proj. from 25 bins) Sampled 0.0077± 0.0028 0.077± 0.014 1.000± 0.020

Table A.1: Theoretical versus sampled mean ± std of covariance matrix comparison metrics with the
true precision matrix. A close agreement can be seen.

This should not affect the results, save for numerical instabilities in matrix operations. Full

45-bin sample covariance and precision matrices have been estimated in each batch. Then, 25

bins were selected and projected into 5 quantities, for simplicity, using 5 random orthonormal

vectors as parameter derivatives. Comparison between theoretical and sampled means and

standard deviations is presented in Table A.1. Differences are most pronounced in DKL, but

the disagreement is only in the second digit of standard deviation and fractions of standard

deviation on the mean. Therefore, we report a close agreement, more than enough for the

main part of the paper, where the scatter of RascalC results is significantly larger than these

standard deviations. We note that the results for DKL and Rinv (Equations (A.12), (A.35),

(A.47) and (A.48)) are approximate and we expect meaningful deviations from them, especially

as Nbins increases, while the derivations for R2
inv and χ2

red (Equations (A.45) and (A.52)) are

exact.

We have repeated this test with a realistic covariance matrix (RascalC Average NG

for pre-reconstruction) and derivatives of the observables with respect to the parameters

(accordingly, for the BAO model before reconstruction) to confirm whether the comparison

measures are indeed not affected. We have obtained the same numbers as in simpler test

(Table A.1), and close agreement of σ[σ(αBAO)]/σ(αBAO) with [2(nS − 1)]−1/2 according to

Equation (2.50).

A.3 Covariance for the combination of two regions

In this section, we document the procedure to compute the covariance matrix for the combi-

nation of two (or more) disjoint regions (volumes) using the covariances in each region. It is
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fully consistent with the correlation function treatment in the DESI data processing pipeline.

A.3.1 Angular bins

During the combination of regions labeled by G, DESI scripts simply add the total counts of

every relevant kind QQ (where each Q can be D or R, data or randoms1):

(
QXQY

)c
a
=
∑

G

(
QXQY

G

)c
a
. (A.54)

The following technical details are important for the strictly correct implementation with

pycorr. The counts entering the correlation function estimator (Equation (A.1)) need to

be normalized properly. Originally the main cause was the possibly different number of

galaxies and random points (Landy & Szalay, 1993; Pons-Bordería et al., 1999). Now we are

often weighting both types of points, and the pair counts weighted by the product of the

two individual point weights can be normalized by the product of the sums of the weights2.

pycorr stores both the weighted counts (wcounts) and their normalization (wnorm). It is their

ratio, the normalized counts, that enter the correlation function estimator (Equation (A.1)).

Before adding the pair counts for the two regions, DESI scripts bring counts of different

types to the same normalization within each region (via the normalize method3). During

the combination of regions wnorm are added as well as wcounts. Therefore, the change of

normalization within each region alters the relative contributions of the regions to different

types of counts, even though it does not affect the region’s correlation function. Therefore,

this step is important to reproduce. With all count types brought to the same normalization

(in each region and therefore in their combination), the wnorm cancel out in the Landy-Szalay

estimator (Equation (A.1)) and so it is sufficient to substitute only wcounts.

Then the total correlation function (Equation (A.1)) is simply the average of the two

1I.e. QXQY encompasses DXDY , DXRY , RXDY and RXRY count arrays if standard BAO reconstruction
is not used. After reconstruction we also have S – shifted randoms, and the counts relevant to the Landy-Szalay
estimator are DXDY , DXSY , SXDY , SXSY and RXRY .

2Exactly
∑

i w
X
i ×∑

j w
Y
j for cross-correlations (X ≠ Y ) and

(∑
i w

X
i

)2 −∑
i

(
wX

i

)2 for auto-correlations.

3By default, this method preserves the wnorm of DXDY counts.
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regions’ correlation functions weighted by RR counts:

(
ξXY

)c
a
=

1

(RXRY )ca

∑

G

(
RXRY

G

)c
a

(
ξXY
G

)c
a
≡
∑

G

(
WXY

G

)c
a

(
ξXY
G

)c
a
, (A.55)

(
WXY

G

)c
a
≡
(
RXRY

G

)c
a

(RXRY )ca
. (A.56)

Then the covariance matrix for the combined region is simply

(
CXY,ZW

)cd
ab

≈
∑

G

(
CXY,ZW
G

)cd
ab

(
WXY

G

)c
a

(
WZW

G

)d
b
, (A.57)

where we neglect the covariance between the correlation functions in different regions, the

estimation of which poses extra challenges. We expect this to be a safe approximation for the

North and South Galactic caps in the DESI footprint because the separation between galaxies

in different caps is significantly larger than the maximum separation for correlation function

measurements (200 h−1Mpc).

A.3.2 Legendre

We can build upon the results for angular bins, with conversions both ways between them

and Legendre moments. The Legendre multipoles are estimated from the angular bins via

Equations (2.17) and (2.18):
(
ξXY

)ℓ
a
=
∑

c

(
ξXY

)c
a
F ℓ
c . (A.58)

One can do the reverse approximately with bin-averaged values of the Legendre polynomials4:

Lc
ℓ ≡

1

∆µc

∫

∆µc

dµLℓ(µ) =
F ℓ
c

(2ℓ+ 1)∆µc
, (A.59)

(
ξXY

)c
a
≈
∑

ℓ

(
ξ̂XY

)ℓ
a
Lc
ℓ. (A.60)

These do not depend on the region. Additional approximation comes from the fact that we

limit the multipole index — in this work, we only consider ℓ = 0, 2, 4.

With this, we can work out the partial derivative of the Legendre moment of the combined

4Or possibly with just the middles of the bins, but this way they end up very much related to already
computed projection factors F ℓ

c .
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correlation function with respect to one in each of the regions in the following steps:

∂
(
ξXY

)ℓ
a

∂
(
ξXY
G

)ℓ1
a

=
∑

c

∂
(
ξXY

)ℓ
a

∂(ξXY )ca

∂
(
ξXY

)c
a

∂
(
ξXY
G

)c
a

∂
(
ξXY
G

)c
a

∂
(
ξXY
G

)ℓ1
a

≈
∑

c

F ℓ
c

(
WXY

G

)c
a
Lc
ℓ1 ≡

(
WXY

G

)ℓ,ℓ1
a

; (A.61)

the different separation bins and correlation functions stay independent.

Then the covariance matrix for the combined region’s 2PCF is

(
CXY,ZW

)ℓℓ′
ab

≈
∑

G

∑

ℓ1,ℓ′1

(
CXY,ZW
G

)ℓ1ℓ′1
ab

(
WXY

G

)ℓ,ℓ1
a

(
WZW

G

)ℓ′,ℓ′1
b

, (A.62)

here we also neglect the covariance between the correlation functions in different regions.
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Appendix B

Appendix to Hubble tension with

clumpy recombination (Chapter 4)

B.1 Justifying simplifications

B.1.1 RECFAST vs HyREC

In the main text we used the recombination code RECFAST, as it is faster than the more

precise HyREC; here we justify that this choice does not bias our results. RECFAST is

sufficiently accurate for the analysis of Planck data, though this code will not be satisfactory

for future CMB missions (Lee & Ali-Haïmoud, 2020). Moreover, highly nonstandard hydrogen

densities, which can appear in the ± zones in M3, might limit the RECFAST applicability

even further.

For our purposes, the change of zero-point is not the most important, as we focus on

the shift introduced by clumping. Therefore, we compare the relative changes in C
TT/EE
ℓ

between ΛCDM with standard recombination and M3 with b = 1 clumping obtained with

RECFAST and HyREC (with full hydrogen model) in Figure B.1. We overlay the CMB-S4

error bars to assess the difference. There is no notable difference for ℓ ≤ 2000-2500, so for

current Planck data both codes can be considered equivalent. In particular, the differences

between each M3 model and ΛCDM are ∆χ2
Planck,RECFAST = 93 and ∆χ2

Planck,HyREC = 90,
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Figure B.1: Relative shifts between ΛCDM with standard recombination (taken as reference Cℓ,ref)
and a particular M3 configuration (δ− = −0.9, δ+ = 5/3, f0 = 1/3 giving b = 1, like in Figure 4.5),
using RECFAST (in black) and HyREC (in blue). The red bands correspond to CMB-S4 errors binned
with ∆ℓ = 100. The cosmological parameters (θs, ωb, ωcdm, As, ns, τreio) are fixed to the Planck best
fit.
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which are very close (as we note we have not shifted any parameters here). For SO or CMB-S4,

however, the difference between the recombination codes can be larger. For the lines shown,

∆χ2
CMB−S4,RECFAST = 1350 and ∆χ2

CMB−S4,HyREC = 1150, if one assumes the Planck best-fit

cosmology (fixed), which shows a relative difference between the recombination codes of ≲ 20%.

Near the fiducial, where most of posterior is, the absolute difference will naturally be lower.

Also, for CMB-S4 precision the shifts in parameters are expected to be less than 1σ (Lee &

Ali-Haïmoud, 2020). We conclude that an analysis of real SO and CMBS4 data should use

HyREC, though RECFAST is sufficient for our forecasting purposes.

B.1.2 Neutrino masses

Throughout this paper we assumed massless neutrinos for efficiency, as it reduces the com-

putational overhead by an order of magnitude. This increases our best fit H0 compared to

the Planck one. However, again, we are most interested in changes introduced by clumping

with respect to standard recombination, so we compare them for massive and massless neu-

trinos in Figure B.2. The difference between both predictions in this plot is minuscule, and

always smaller than even the CMB-S4 error bars. More quantitetively, for the lines shown,

∆χ2
Planck,mν=0.06 eV = 92.6 and ∆χ2

Planck,mν=0 eV = 93.3; ∆χ2
CMB−S4,mν=0.06 eV = 1346 and

∆χ2
CMB−S4,mν=0 eV = 1334 (if one assumes Planck best fit cosmology for fiducial). The relative

difference in ∆χ2 is ≲ 1% in both cases. Therefore computing with massless neutrinos suffices

our purposes.

B.2 Full contours from Planck runs

In Figure B.3 we show posteriors for all parameters in runs of M3 with Planck 2018 data

(without and with SH0ES). The posteriors on clumping parameters log10 (−δ−), log10 |δ+/δ−|

and f0 are largely flat, like the priors, except the decrease for higher |δ−| for Planck and

increase in the same place for Planck+SH0ES. The clumping parameters also show almost no

correlations with standard cosmological parameters, except a weak H0 increase for the highest

|δ−|. Addition of SH0ES causes some increase in ns, Ωbh
2, H0; a weak increase in As and τreio;
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Figure B.2: Same as Figure B.1 but comparing the cases of massive (black) and massless (blue)
neutrinos.

some decrease in Ωcdmh
2.
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Figure B.3: Full contour plot for Planck runs of M3. Purple is with SH0ES, blue is without.

B.3 Best fit parameters

In Table B.1 we show the best fit parameters when fitting with full Planck data. The M3 best

fit to Planck-only is not shown, as we have not found a better one than ΛCDM, and the ΛCDM

is included in M3 when one sets either one of the δ’s to 0 or f0 = 1. Adding SH0ES in ΛCDM

naturally increases H0 as well as most input parameters: As, ns, θs, ωb, τreio; whereas ωcdm
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Model ΛCDM ΛCDM M3
Fit to Planck Planck+SH0ES
δ− n/a (0) n/a (0) −0.955
δ+ n/a (0) n/a (0) 1.320
f0 n/a (1) n/a (1) 0.652
b n/a (0) n/a (0) 0.439

109As 2.1094 2.1440 2.1132
ns 0.96604 0.97084 0.96552

100θs 1.04192 1.04207 1.04177
Ωbh

2 0.022416 0.022569 0.022714
Ωcdmh

2 0.11945 0.11762 0.11999
τreio 0.0514 0.0555 0.0542

H0 [km/(s Mpc)] 68.146 68.993 70.916
ΩK 0

mν [eV] 0
χ2
low ℓ TT 23.2 22.4 23.6

χ2
low ℓEE 395.7 396.1 395.9

χ2
high ℓ TTTEEE 582.2 584.0 585.4
χ2
lensing 9.0 8.7 8.8

χ2
Planck 1010.0 1011.1 1013.7

χ2
SH0ES (15.1) 10.5 3.1

Table B.1: Our best fit parameters to (full) Planck and Planck+SH0ES.

decreases slightly. M3 allows for larger H0, while the increase in As and τreio become smaller,

ns and θs decrease very slightly, Ωbh
2 increases further than in ΛCDM and Ωcdmh

2 increases,

unlike in ΛCDM. The CMB χ2 difference is dominated by high-ℓ TT, TE,EE (where “high”

means ℓ > 30).

In Table B.2 we show the best fit parameters when fitting with Planck ℓ < 1000 data.

The shifts in cosmological parameters are similar and small. Interestingly, the addition of

SH0ES helped to find a better fit to Planck than ΛCDM, unlike with Planck-only data.

This is likely because the optimal parameters region with high clumping is small. However,

the fit improvement is not significant. The CMB χ2 difference is also dominated by high-ℓ

TT, TE,EE (where “high” now means 30 < ℓ < 1000).
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Model ΛCDM ΛCDM M3
Fit to Planck ℓ < 1000 Planck ℓ < 1000 + SH0ES
δ− n/a (0) n/a (0) −0.950
δ+ n/a (0) n/a (0) 1.196
f0 n/a (1) n/a (1) 0.301
b n/a (0) n/a (0) 0.794

109As 2.0918 2.1315 2.0705
ns 0.97026 0.97711 0.95944

100θs 1.04150 1.04179 1.04034
Ωbh

2 0.022537 0.022773 0.022700
Ωcdmh

2 0.11831 0.11613 0.12198
τreio 0.0518 0.0553 0.0505

H0 [km/(s Mpc)] 68.528 69.640 72.616
ΩK 0

mν [eV] 0
χ2
low ℓ TT 22.4 21.4 24.8

χ2
low ℓEE 395.7 395.9 395.6

χ2
high ℓ TTTEEE 286.3 288.2 281.5
χ2
lensing 8.9 9.0 8.8

χ2
Planck 713.2 714.4 710.7

χ2
SH0ES (12.9) 7.5 0.2

Table B.2: Our best fit parameters to Planck ℓ < 1000, without and with SH0ES.
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Appendix C

Appendix to thermal

Sunyaev-Zeldovich galaxy selection

(Chapter 5)

C.1 Distribution of numbers of close neighbors for LRG in

different tSZ SNR bins

We provide details on the distributions of the numbers of close neighbors in different tSZ SNR

bins in Figure C.1. “Fraction relative to all” is

N(galaxies in SNR bin with k neighbors)
N(galaxies in SNR bin)

× N(all galaxies)
N(all galaxies with k neighbors)

(C.1)

We obtained them by

• finding all the unique close galaxy pairs obeying the desired condition (Section C.2

details the numerical method);

• counting occurrences of each galaxy in the resulting array of pair member indices, which

gives the number of close neighbors for that galaxy;

• counting how many galaxies have each number of neighbors (discrete histogram, e.g.
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Figure C.1: Distribution of numbers of close neighbors for LRG in different tSZ SNR bins. Left:
absolute number of galaxies in each bin with a given number of close neighbors. The neighbors counted
are LRGs belonging to any bin. Right: an attempt to highlight the differences between different bins.
“Fraction relative to all” is the fraction of galaxies with a given number of close neighbors in a given
SNR bin, divided by the fraction of galaxies with the same number of close neighbors among the full
LRG sample; see also Equation (C.1).

numpy.bincount) for the full LRG sample;

• dividing the galaxies into SNR bins and repeating the previous step in each bin.

C.2 Efficient method for near-neighbor search in cylinders

In this section, we describe our methodology for efficient search of close-neighbor galaxy pairs

with different limits on parallel (r∥,max) and perpendicular (r⊥,max) separations within the

pair. We define r∥ and r⊥ as components of the pair separation vector r2 − r1 with respect

to the line-of-sight direction n̂. In periodic boxes, this direction is typically fixed (flat-sky

approximation). In the more complex case of a large realistic survey accounting for the curved

sky, we choose n̂ along the direction to the midpoint of the pair, r1 + r2.

We assume flat FLRW cosmology (as is DESI fiducial cosmology for comoving distance

computations and coordinate conversion), allowing us to convert to 3D Cartesian space.

We build upon the k-d (k-dimensional) tree — an efficient data structure for searching for

pairs closer than a given k-d Euclidean distance, or more generally with any other p-norm
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with p ≥ 1 for k-dimensional vectors:

∥v∥p ≡
(

k∑

i=1

|vi|p
)1/p

. (C.2)

The p → +∞ limit (hereafter p = ∞ for brevity) is the maximum norm, which will be useful:

∥v∥∞ ≡ max (|v1|, . . . , |vk|). (C.3)

The k-d tree pair-finding algorithm relies on the fact that ∥x∥p ≥ |xi| for any component index

i. Many other distance metrics do not have such property.

Of course, any pair of galaxies with
∣∣r∥
∣∣ ≤ r∥,max and r⊥ ≤ r⊥,max also satisfy |r2 − r1| ≤

√
r2∥,max + r2⊥,max. The latter criterion can be straightforwardly used for pair searching with a

k-d tree, but this step produces extra pairs. We then need to store their information, compute

r∥, r⊥ strictly for them, check the exact condition, and discard a large fraction of the pre-

selected pairs (especially if the cylinder aspect ratio is very unequal, like r∥,max = 10× r⊥,max

in our use cases). Next, we explain several ideas to optimize the pair pre-selection with k-d

tree, e.g., for the sake of memory usage.

C.2.1 Fixed line of sight

With a fixed line-of-sight direction, we can align one of the coordinate axes with it by rotation

if they do not match already. Let us assume n̂ = ẑ in the remainder of this subsection. Then

we can scale the parallel and perpendicular separations independently via

x′ = a⊥x, (C.4)

y′ = a⊥y, (C.5)

z′ = a∥z. (C.6)

In principle, we can use a⊥ = 1/r⊥,max, a∥ = 1/r∥,max and define a custom norm

∥∥∆r′
∥∥
custom

≡ max

[√
(∆x′)2 + (∆y′)2,

∣∣∆z′
∣∣
]
, (C.7)
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which exactly defines the cylinder we want and maintains the property of being not less than

the absolute difference in any coordinates, so k-d tree could work with it. However, the

scipy (Virtanen et al., 2020; Gommers et al., 2023) implementation only supports the p-norm,

Equation (C.2), including the p = ∞ case, Equation (C.3). This gives two options of imperfect

pre-selection:

(i) ∥∆r′∥∞ < 1 criterion with a⊥ = 1/r⊥,max, a∥ = 1/r∥,max. This is, in essence, fitting

a cube over a cylinder with a height (h) equal to its diameter (2R), and the ratio of

volumes is 4/π.

(ii) using the Euclidean (p = 2) norm, essentially fitting a sphere over the cylinder. The

optimal aspect ratio is less obvious than in the previous case, but the minimum sphere-

to-cylinder volume ratio is
√
3 for h/R =

√
2.

√
3 > 4/π so this variant seems worse.

As a result, we used the first option and filtered the resulting pairs using the criterion

(∆x)2 + (∆y)2 ≤ r2⊥,max, because |∆z| ≤ r∥,max is already guaranteed.

C.2.2 Varying (midpoint) line of sight

The problem is more challenging with varying line-of-sight direction n̂ because it does not

allow rescaling the component separately as straightforwardly.

However, it is possible to erase information along the line of sight by projecting each galaxy

onto the unit sphere:

x′ = x/r, (C.8)

y′ = y/r, (C.9)

z′ = z/r. (C.10)

If we define Θ = ∠(r1, r2), the distance between the corresponding points r′1, r
′
2 on the

unit sphere is 2 sin(Θ/2) whereas we prove that

r⊥ ≥ min (r1, r2) sinΘ. (C.11)
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Number of pairs r⊥ < 2,
∣∣r∥
∣∣ < 20 r⊥ < 3,

∣∣r∥
∣∣ < 30

Simple distance 1.15×107 3.05×107

Sphere embedded in 3D 6.27×106 1.37×107

4D embedding, p = 2 1.16×106 2.70×106

4D embedding, p = ∞ 1.11×106 2.51×106

Complete condition 4.40×105 9.25×105

Table C.1: Resulting number of pairs for different close-pair pre-selection methods for our two criteria
for DESI DR1 LRG (curved sky) with redshifts 0.4 < z < 0.85. The distances are in h−1Mpc.

Thus, if we have a galaxy sample with a minimum distance to the origin rmin ̸= 0, we can

use the unit sphere to apply a meaningful, albeit not a perfect pre-filter in r⊥. To avoid

excluding extra pairs, the (Euclidean) distance limit on the unit sphere should be slightly

larger than sinΘmax = r⊥,max/rmin. This is a 2-dimensional surface of the sphere embedded

in 3-dimensional space.

Our addition is a fourth dimension for the radial coordinate:

w′ = a× r. (C.12)

It can allow to apply a filter in r∥ because

∣∣r∥
∣∣ ≥ |r2 − r1|, (C.13)

although it is imperfect too.

Like with the fixed line of sight, for the combination of the r⊥ and r∥ constraints without

re-implementing the k-d tree, we should choose between the maximum (p = ∞) and Euclidean

(p = 2) norms. Similarly, the implementation with the maximum norm has more straightforward

rescaling factors. Efficiency estimates are harder now, but the implementation with the

maximum norm is more straightforward and it gave a marginally better pre-selection than with

the Euclidean norm for our data, as we show in Table C.1. Both 4-dimensional embedding

variants give a significantly stricter selection than the 3D distance filter and the r⊥-only

selection with the sphere embedding in 3D.
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